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AFIT/DS/ENY/09-S04 
Abstract 

A least-squares, continuous sensitivity analysis method is developed for transient 

aeroelastic gust response problems to support computationally efficient analysis and 

optimization of aeroelastic design problems.  The continuous sensitivity equations are a 

linear boundary-value problem and render computationally efficient design or shape 

parameter gradients from a continuous system of partial differential equations.  A key 

distinction between the local and total derivative forms of the sensitivity system is 

introduced.  The continuous sensitivity equations and sensitivity boundary conditions are 

derived in local derivative form which is shown to be superior for several applications.  

The analysis and sensitivity problems are both posed in a first-order form which is 

amenable to a solution using the least-squares finite element method.  Several example 

and validation problems are presented and solved, including elasticity, fluid, and fluid-

structure interaction problems.  Most have known analytic solutions which are compared 

to the continuous sensitivity solutions.  The continuous sensitivity results for both the 

local and total material derivatives are presented and compared to analytic gradients and 

gradients obtained by finite-difference methods.  Significant contributions of the research 

include the first sensitivity analysis of nonlinear transient gust response, a local derivative 

formulation for shape variation that requires parameterizing only the boundary, and 

statement of sufficient conditions for using nonlinear "black box" software to solve the 

sensitivity equations.  Promising paths for future investigation are presented and 

discussed. 
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LEAST-SQUARES, CONTINUOUS SENSITIVITY ANALYSIS 
FOR NONLINEAR FLUID-STRUCTURE INTERACTION 

 
 

1 Introduction 

1.1 Background and Motivation 

Due to excessive computational expense, the design and shape optimization of a 

lightweight, flexible air-vehicle structure susceptible to aeroelastic loads and nonlinear 

response is currently not practical.  This research has endeavored to develop a sensitivity 

analysis method for nonlinear, transient fluid-structure interaction problems that avoids 

some of the computational limitations of existing methods and renders a potentially more 

efficient method for design optimization of future aerospace applications. 

Aeroelasticity is a challenging science, dealing with the interaction of two very 

different domains governed by disparate physics.  Nonlinear aspects of both the fluid and 

structural domains can make accurate calculations of the interaction problematic, not the 

least due to the substantial computational expenses involved.  Since optimization and 

inverse design methods typically require some measure of the change of an objective 

function or performance parameter to variations in design parameters, optimization of 

aeroelastic problems, which are themselves computationally intensive, challenging, and 

expensive to solve, can be outright formidable.  Thus, this subject represents a very prime 

frontier for basic research and even small contributions for advancing towards a 
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computationally efficient analysis and sensitivity method for nonlinear fluid-structure 

interaction (FSI) problems may prove significant and fruitful.  Of more than mere 

academic interest, the inverse design and optimization problem for which sensitivity to 

shape design parameters is desired is vital for the next-generation of USAF persistent 

Intelligence, Surveillance, and Reconnaissance (ISR) aerospace platforms.  Some of the 

proposed configurations currently being studied by AFRL/RB, the primary sponsor of 

this research, are depicted in Figure 1.1.  A critical mission requirement is long 

endurance which dictates large fuel fractions and lightweight structures.  The lightweight 

requirements and large aspect ratio of these configurations contribute to large 

deformations of the structure and significant geometrically nonlinear effects.  Further, the 

low wing-loading results in significant gust response.  Indeed gust response loads have 

been identified as the critical load condition for joined wing configurations similar to the 

designs of interest in Figure 1.1 [20, 38, 75, 78, 131, 132]. 

 

Figure 1.1:  Boeing design study (left) and AFRL Sensor-Craft concept (right) 
configurations 

The research goal of this dissertation is motivated by the need for a 

computationally efficient design optimization method for nonlinear aeroelastic response 
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of a lightweight, flexible aerospace structure.  Thus, this research endeavors to develop a 

sensitivity analysis framework that might enable computationally efficient methods for 

design optimization of future aerospace applications.  Specifically, the research develops 

the continuous sensitivity equation (CSE) method for fluid-structure interaction 

problems.  To solve the sensitivity problem, the fluid-structure response problem must be 

solved first.  This includes modeling the transient, nonlinear gust response of a 

representative fluid-structure problem in which to demonstrate the continuous sensitivity 

method theory and verify that it provides the desired gust response sensitivity.  Shape 

variation problems are of particular interest because they are more computationally 

challenging for other sensitivity methods and are typically of interest in early inverse 

design studies.  Thus a focus of the research is to calculate the shape parameter design 

gradients for any dependent domain variable. 

The next section outlines the results of these research efforts and the significant 

and minor contributions to the subject. 

1.2 Original and Significant Contributions of Research 

Accurate aeroelastic analysis of the nonlinear gust response of a flexible structure 

undergoing large deformation is technically challenging and limited by the computational 

complexity of the transient, nonlinear fluid-structure interaction.  Although we have 

solved the aeroelastic gust analysis problem for only simple examples in the course of 

this research, this dissertation demonstrates that a least-squares, continuous sensitivity 

approach is a straightforward method for calculating the shape design sensitivity of the 

fluid-structure system once the aeroelastic analysis is completed.  The approach is 
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computationally efficient and avoids many of the problematic and computationally 

expensive steps for sensitivity analysis of other currently employed methods. 

This dissertation makes two significant contributions to the state of knowledge for 

the application of continuous sensitivity methods.  Although they are posed in support of 

the sensitivity analysis of fluid-structure interaction problems, they are more general and 

more fundamental than the application to FSI.  The first of the two major contributions of 

the present work is the recognition that the sensitivity system is simpler to pose in local 

derivative form than in total (material) derivative form.  For shape sensitivity problems, 

the local sensitivity form is not unique (itself a significant recognition and contribution), 

but it may be transformed to the unique total derivative form as needed.  The local CSE 

form as posed in this dissertation makes explicit that only boundary data is needed for 

shape variation problems.  This is in contrast to other local CSE formulations that are 

written as domain variation problems.  These distinctions are explained in detail in 

Chapter 3. 

The second major contribution is the detailed explanation of how to employ the 

same code for continuous sensitivity analysis as was used to solve the original, parent 

analysis problem.  This may be done in a “black box” manner without access to the 

source code and is explained in detail in Chapter 8. 

Both of these two major contributions should allow a more widespread adoption 

of the CSE method.  First, because the system of equations is simpler to state; second, 

because special analysis software is unnecessary to solve the sensitivity problem.  In the 

course of the research and method development, other original contributions have also 



18 

been made that advance the state of knowledge.  Each of the items in the following list of 

contributions is explained in more detail in the dissertation: 

1) First sensitivity calculation for a nonlinear FSI, transient gust response (Chapter 7) 

2) Explicit explanation that local sensitivities for shape variation problems are not 

unique, but that the material derivative is unique (Chapter 3) 

3) Simpler sensitivity boundary condition for elasticity problems with traction boundary 

conditions (Chapter 3, Chapter 5) 

4) Most detailed application of continuous sensitivity to the solution of an elasticity 

problem to appear in the literature (Chapter 5) 

5) Demonstration that transient sensitivity problems need not be solved as a transient 

problem (Chapter 7) 

6) Demonstration of a condensation and recovery method for improving the condition 

number of least-squares finite element weakly enforced boundary data (Chapter 4) 

7) Observations on an apparent relationship between the minimum recommended 

polynomial order for the least-squares finite element (LSFEM) solution to elasticity 

problems and the lowest order stable-mixed element for elasticity (Chapter 4) 

8) First known documented use of an alternative norm solution for a LSFEM elasticity 

system and comparison with the traditional L2 norm (Chapter 4) 

9) Numerical stability analysis for a LSFEM domain with higher-order backward-

difference discrete time formulation method for transient LSFEM (Chapter 4) 

10) Proof of the equivalence of Newton-Raphson tangent stiffness matrix and CSE 

system matrix for Galerkin FEM (Chapter 8) 



19 

11) Derivation of an improved Newton-Raphson method for LSFEM (Chapter 8) 

Furthermore, the FSI analysis in Chapter 7 is the first analysis known in the 

literature which studies the nonlinear response to a transient gust load.  The subsequent 

sensitivity analysis of the same problem is also the first attempt to study transient gust 

sensitivity in the literature.  The ultimate application and goal of this research is that it 

will permit a computationally efficient analysis method to calculate nonlinear, aeroelastic 

design gradients that may someday ultimately be used to design and optimize very 

flexible aerospace structures. 

1.3 Overview of Sensitivity and FSI Analysis Methods 

This section provides a brief background and roadmap overview of the sensitivity 

and fluid-structure interaction analysis methods used in the dissertation.  In-depth 

background, theory, and results are provided in the remainder of the dissertation.  This 

section provides the strategic overview. 

Many of the most widely used optimization algorithms are gradient-based in 

which the design parameter gradients of objective and/or constraint functions with 

respect to design variables are required.  The design parameter gradients are commonly 

referred to as sensitivities and can be calculated in various ways.  Design sensitivity 

methods can be grouped into numerical approximate methods (e.g. finite difference) and 

analytic/semi-analytic methods, Figure 1.2.  Numerical approximate methods calculate 

parameter derivatives by perturbation finite difference methods [60].  This can be costly 

if the original numerical solution is itself costly (e.g. CFD, FEM).  Analytic and semi-

analytic methods can be further classified as either discrete or continuous, the difference 
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depending on the order of the discretization and the differentiation steps [34, 60].  The 

most common approach is to discretize the system first and then calculate sensitivities by 

either direct or adjoint methods.  For shape sensitivity problems, the boundary and 

domain of the problem vary with the design parameters and the mesh sensitivity must 

also be calculated in the discrete approach.  This dissertation employs the continuous 

sensitivity method, in which the design parameter gradients are calculated by solving the 

continuous sensitivity equations (CSE), typically a system of partial differential equations 

[23].  The continuous sensitivity method is variously known as variational shape design 

[60], the continuum sensitivity method [39], and the variational sensitivity method [59]. 

Since the CSE system is posed as a continuous system, it can efficiently produce shape 

parameter gradients without calculating the mesh sensitivity (which often amounts to the 

expensive task of inverting a large mesh Jacobian).  Thus, the continuous sensitivity 

method for gradient calculation can efficiently produce design parameter gradients for 

shape optimization problems without needing to calculate the problematic mesh 

sensitivities.  The resulting sensitivity equations are always linear, even for nonlinear 

systems, which is particularly attractive for the nonlinear aeroelastic problems considered 

here. 

Continuous sensitivity methods were first introduced for structural problems [39, 

41], but few actual applications to structural problems appeared in the literature.  The 

application of CSE to fluid problems appeared later but was more widely adopted for 

flow optimization problems and is now more mature with commercial code packages 

available.  Recent work by Pelletier and his students at Ecole Polytechnique de Montreal 
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have extended CSE methods to unsteady fluid-structure problems, but their primary 

interest has been in examining the flow sensitivity (see Section 2.3.2).  The motivating 

interest behind this dissertation is in the structural sensitivity and subsequent optimization 

to an aeroelastic response.  This dissertation thus develops a CSE method appropriate for 

the structural analysis and sensitivity of a nonlinear gust response.  To our knowledge, 

this is the first example in the literature that employs least-squares formulations to solve 

the CSE system for a coupled fluid-structure system.  As will be explained, the choice of 

least-squares finite elements to solve both the fluid-structure system and the CSE system 

was based on expected analysis advantages for the fluid-structure problem.  Additionally, 

very few applications of CSE methods to transient problems exist in the literature and 

none that are based on a transient, compressible fluid formulation. 

 

Figure 1.2:  Classification and methods of design sensitivity analysis 
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The least-squares finite element method (LSFEM) is a numerical method for 

solving differential equations.  It is similar to other variational methods in which a 

solution (function) is sought that minimizes some objective (functional).  In LSFEM, the 

square of the system residual is minimized.  LSFEM is capable of numerically solving all 

types of partial differential equations within a single computational framework without 

any special numerical treatment.  Thus a LSFEM solution strategy for monolithic FSI 

formulations (suitable for optimization) is promising.  LSFEM for time-dependent and 

nonlinear problems are well-established in the literature, and are applicable to analysis of 

transient, nonlinear gust response with certain cautions that are explained in Chapter 4. 

A LSFEM solution strategy is also a natural choice for CSE.  Sensitivity 

expressions are often desired for both primal and dual variables.  Since the LSFEM 

method commonly uses a first-order form for the governing system of equations, a 

LSFEM implementation offers equal degrees of accuracy in all the problem variables.  

Unless specific mixed-elements are designed for the problem, this is not generally true 

for a Galerkin-formulated finite element model.  For example, elasticity systems are 

typically solved using displacement variables and the stress field is calculated by 

differentiating the solution.  This decreases the continuity of the approximated stress 

tensor as well as the accuracy of the estimate.  This can have a profound effect on the 

continuous sensitivity equations, since the FEM solution of the original system is used to 

estimate the boundary conditions for the CSE system. 
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1.4 Organization of Dissertation 

Chapter 2 outlines the history and the current state of known research from the 

literature in continuous sensitivity analysis methods, least-squares finite element 

methods, and fluid-structure iteration analysis methods.  Chapter 3 derives the theory for 

the continuous sensitivity analysis methods, including an important distinction between 

the local and total (material) derivative form of the equations.  Chapter 4 explains the 

theory and implementation of the least-squares finite element method for the various fluid 

and structural models used in the subsequent fluid-structure interaction analysis.  Chapter 

5 presents least-squares continuous sensitivity equation (LS-CSE) results for structural 

systems and Chapter 6 presents sensitivity results for fluid problems.  The emphasis in 

both cases is on comparing CSE method results with analytic derivatives for both local 

and total derivatives.  Thus, these are useful validation examples for the current work and 

for future efforts.  Chapter 7 presents the LS-CSE results for several example FSI 

problems.  Chapter 8 discusses several practical considerations for implementation of 

CSE and explains how to use the existing analysis code for a parent problem to solve the 

sensitivity problem.  This can be done in a “black box” manner without access to the 

underlying source code.  Finally, Chapter 9 summarizes the work, discusses the overall 

significance of the research, and recommends several avenues for future study. 
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2 Literature Review 

The purpose of this chapter is to outline the history and research background of 

the various components of the dissertation.  Special emphasis is given to the known limits 

of the current state of knowledge as established in the published literature.  This chapter 

is divided into four main sections: continuous sensitivity analysis methods (Section 2.1), 

fluid-structure interaction analysis methods (Section 2.2), sensitivity analysis of fluid-

structure systems (Section 2.3), and least-squares finite element methods (Section 2.4). 

2.1 Continuous Sensitivity Equation (CSE) Methods 

Design optimization methods rapidly evolved as a practical science in the years 

following WWII.  The fruits of optimization in a wide variety of fields are often traced to 

common roots in the birth of operations research in the RAF bomber command during the 

war.  For example, Schmit’s 1960 paper [113], recognized as one of the founding papers 

in the field of structural optimization, is based on the same linear and nonlinear 

mathematical programming techniques developed for bomb-to-target allocation 

problems.  Sensitivity methods, which describe how an outcome or performance measure 

varies in proportion to the variation of some input, are one of the most widely employed 

methods of analysis for optimization and have a range of meanings (both quantitative and 

qualitative) that match the range of disciplines in which they have been used [139].  In 

the present context, we use sensitivity to mean the gradient of response functions with 

respect to a design variable.  Response functions are dependent state variables (or 

functions of the state variables) governed by mechanical or constitutive laws. 
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As described in Section 1.3 and depicted in Figure 1.2, design sensitivity methods 

can be grouped into numerical approximate methods or analytic (and semi-analytic) 

methods.  Analytic sensitivity is also a mature subject, particularly as applied to structural 

systems, as indicated by the presence of many excellent textbooks on the subject [34, 59, 

60].  The efficient choice of direct or adjoint methods of sensitivity analysis (based on the 

number of responses vs. the number of design variables) is also well-established.  

Sensitivity optimization for fluid problems followed a roughly parallel development, 

including rapid development of computational techniques for airfoil design in the 1970s 

[1].  The emphasis in optimization of fluid problems appears to be on parameter and 

shape optimization techniques, whereas structural optimization during the same period 

addressed both shape and size optimization problems.  Overall, shape sensitivity and 

optimization methods are more developed and applications are more common for 

structural problems [9, 10, 39, 59, 92] than they are for fluid problems, but they have not 

typically employed continuous sensitivity methods for the solution of representative 

example problems. 

The analytic and semi-analytic sensitivity methods can be further classified as 

either discrete or continuous, the difference depending on the order of the discretization 

and differentiation steps [34].  The most widely used approach is to discretize the system 

first and calculate sensitivities by either direct or adjoint methods.  This is commonly 

referred to as “discretize first, then differentiate” in the literature [119].   For shape 

sensitivity problems, the mesh sensitivity must also be calculated for this approach which 

can be problematic. 
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The continuous sensitivity method “differentiates first, then discretizes.”  The 

governing system of equations (for the original parent problem) is differentiated with 

respect to the design parameters to yield another system of equations for what are now 

called the sensitivity variables.  The sensitivity variables, governed by the continuous 

sensitivity equations (CSEs), are then discretized and numerically solved.  In practice, it 

is convenient to use the same numerical solution method, e.g. CFD or FEM, to solve both 

the parent and sensitivity problems.  This approach avoids having to calculate the 

problematic mesh Jacobian sensitivity which plagues the discrete shape sensitivity 

method.  The CSE system is always a linear system of equations, even when the original 

system is nonlinear, which can simplify the computational burden (depending on the 

numerical method used for solving the CSE system). 

Continuous sensitivity methods were developed for solid mechanics in the mid-

80s by a series of notable works by Dems and Mroz [40-42] and Dems and Haftka [39].  

Huag et al.’s 1986 textbook on the subject [60] was also an important contribution.  

Arora et al. proved that the material derivative and control volume approaches for 

continuous sensitivity are equivalent [9].  The CSE method for CFD (and the operator 

implementation method of CSE as it is currently recognized) was first introduced by 

Borggaard and Burns (1994) for the shape optimization of a fluid problem in a NASA 

contractor report [24], but did not receive widespread attention until the seminal 1997 

paper[23].  Since then, the application of CSE methods has been far better documented 

for fluid problems.  This includes the PhD dissertations of two of Prof Burn’s students at 

Virginia Tech, Stewart [121] in 1998 and Stanley [119] in 1999 as well as a textbook by 



27 

Stanley and Stewart [120].  This is also the same period during which Prof Pelletier at 

École Polytechnique de Montréal began examining the fluid sensitivity of computational 

fluid problems using continuous sensitivity methods [128].  Most non-fluid applications 

of CSE in the literature have been limited to 1D scalar problems (e.g. heat flow) and 1D 

beam problems [118, 120]. 

The dearth in the literature of structural applications of the continuous sensitivity 

method, despite the method’s theoretical origin in the realm of solid mechanics, probably 

stems from the complicated form for the sensitivity boundary conditions (ref. Section 3.1) 

and the maturity of other design sensitivity methods for structural optimization.  

Bhaskaran and Berkooz presented an FEM-based continuous sensitivity solution for a 2D 

structural elasticity problem that is also considered in Chapter 5 [18], but much of the 

useful detail and validation of the gradient information of the solution was not included.  

Earlier, Phelan and Haber [92] presented a FEM solution for the sensitivity of a 2D 

structural elasticity problem using a domain parameterization method that is similar in 

nature to the continuous sensitivity method (though it is derived and posed in a more 

complicated form), but much of the remaining literature presents structural CSE theory 

without any representative example problems.  A 1997 survey of multidisciplinary 

aerospace design optimization papers [115] listed almost 300 papers with not a single 

reference to the continuous sensitivity approach for obtaining design gradients.  To 

partially fill the gap in the literature and build a better understanding of the CSE method 

for 2D elasticity, we undertook the work presented in Chapter 5 (and recently reported 

[136, 138]). 
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Due to the relative rarity of continuous sensitivity applications in the literature, it 

is not surprising that there are no published accounts which employ LSFEM to solve the 

CSE system.  Thus, the research associated with this dissertation is the first effort to 

study the benefits and disadvantages of employing least-squares methods to solve the 

sensitivity equations.  The least-squares method for fluid-structure interaction, the subject 

of the next section, is also a recent research endeavor. 

2.2 Fluid-Structure Interaction Analysis 

Fluid-structure interaction (FSI) problems can be difficult to solve due to the 

coupling of the disparate fluid and solid physics.  Coupling between the fluid and 

structure domains can generally be classified into three different schemes: 

1) Segregated fluid-structure (fully decoupled or loosely-coupled systems) 

2) Coupled fluid-structure, segregated (decoupled) mesh deformation 

3) Fully-coupled, fluid-structure-mesh deformation (three-field formulation) 

The first scheme is also known as iterative FSI coupling and the last two as direct 

FSI coupling.  Until recently, the most common practical approaches for solving fluid-

structure interaction problems employ the segregated strategy using different theoretical 

formulations and numerical methods to solve the fluid and structure problems separately.  

This segregated solution strategy is illustrated in Figure 2.1.  The fluid domain problem is 

solved using computational fluid dynamics (CFD) and the resultant fluid loads are then 

applied to the structure.  The finite element method (FEM) is then used to calculate the 

displacement of the structure, a new fluid mesh is formed around the deformed structure, 

and the cycle is begun anew.  The segregated approach can obviously leverage the state 
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of the art methods and technology in each separate domain.  This is also the main 

approach used in industry and commercial programs, e.g. MSC.Nastran and ZAERO.  

ADINA FSI, a nonlinear commercial software package for FSI, recommends a 

segregated (iterative FSI) solution for many example applications since it requires less 

memory (ADINA FSI is also capable of fully-coupled, nonlinear solutions).  Mapping the 

fluid pressure onto the structure in iterative FSI was first accomplished using spline 

methods, though more sophisticated methods have been introduced in the literature.  The 

disadvantage of the segregated/iterative approach, however, is the potentially slow 

convergence and no a priori guarantee of convergence [17, 77]. 

 

CFD FEM

loads

displacements

new mesh

CFD FEMCFD FEM

loads

displacements

new mesh

 

Figure 2.1:  Segregated or iterative fluid-structure interaction solution 

The desire to overcome the shortcomings of the segregated approach motivated a 

monolithic formulation of the fluid-structure interaction problem in which the entire 

system is implicitly solved.  Monolithic means cast as a single unit/piece and in this 

approach the physics of the fluid and the structure domains are cast as a fully-coupled 

system that can be solved simultaneously rather than in an iterative, segregated scheme.  
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This approach is also known as direct FSI coupling.  The fluid mesh deformation portion 

of the problem may either be coupled with the fluid and structure physics or solved 

iteratively between each time step in transient problems.  The coupled fluid-structure 

with decoupled mesh deformation approach has been used in several cases [53, 58, 79].  

The location of the interface (the mesh deformation) is calculated separately from the 

coupled fluid-structure solution and is updated at every iteration.  The primary advantage 

of the coupled fluid-structure approach compared to the segregated strategy is continuity 

(i.e. satisfaction) of the interface boundary conditions between the fluid and structure 

domains.  Even if weakly enforced using a boundary integral method [105], the 

continuity of the shared interface tractions and velocities along the boundary are 

considered fully enforced. 

In other recent works, a separate fluid-structure interface (a “mortar” in some 

contexts) has been added to the fluid and structure domains to form a three-field domain 

problem at the fluid-structure boundary [12, 16, 114, 122, 123].  In another new 

approach, Bendiksen [17] eliminated the traditional spline mapping between the fluid and 

structure degrees of freedom and satisfied the interface boundary conditions by matching 

the shape functions used in the fluid and structure domains.  In all cases, a mesh 

deformation or regeneration is required during iteration.  As overall computer 

performance improves and the expense of approaches employing large memory 

decreases, the trend in aeroelastic computational methods is towards full coupling of the 

fluid-structure-mesh systems [12, 13]. 
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Full coupling of the fluid-structure-mesh system is a true monolithic formulation 

[50, 64, 84, 129].  This approach generally gives the fastest convergence [61], though the 

memory requirements are substantially greater, since the fluid, structure, and mesh 

degrees of freedom must be treated and solved simultaneously.  Matthies compared the 

overall numerical performance of monolithic solutions with weakly-coupled partitioned 

schemes with overall favorable conclusions for the monolithic approach [81].  Rasmussen 

[102] posed and solved the fully-coupled nonlinear, transient FSI system using LSFEM.  

Rasmussen’s [101] results confirmed the conclusions of Bendiksen [17] that failing to 

solve the system monolithically can sometimes lead to erroneous solutions for some types 

of transient FSI problems. 

In all of the approaches listed above, the mesh deformation problem can be 

modeled either discretely or on a continuum basis.  The discrete method typically uses a 

spring system between grid points to move the fluid domain proportionally.  Diagonal 

springs between grid points can control element or control volume distortion and 

torsional springs can be included to prevent the mesh from folding over itself [52].  Since 

the mesh is discrete, in most cases there is no need to model the mesh deformation as a 

continuous problem.  One notable relevant exception is the fluid-structure analysis and 

sensitivity approach developed by Pelletier et al. [51], discussed further in Section 2.3.2.  

Their approach for the mesh deformation domain adapts the continuum pseudo-solid 

approach introduced by Sackinger [112] for free-boundary fluid problems. 

For the purpose of validating the CSE method, FSI problems that appear in the 

literature with analytic solutions are particularly interesting.  Unfortunately, there are few 
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examples that are directly applicable to the nature of the motivating problem and which 

are conducive to shape variation and sensitivity analysis.  Wang  [130] gave one system, 

a flexible beam immersed in channel flow, which is explored in Section 7.2.  A 2D 

example problem, Section 7.3, is traceable to the joined-wing configuration of interest to 

the sponsor and was originally posed by Rasmussen [101].  This problem is studied 

extensively throughout the dissertation. 

Since the least-squares finite element method (LSFEM) is a near universal1 

approach for solving problems governed by systems of partial differential equations, it is 

a natural technique for treating coupled domains governed by different physics.  It is this 

aspect of LSFEM that makes it attractive for FSI analysis.  The background for the 

LSFEM is more fully explored in Section 2.3.3, but at this point, we note that only two 

applications of LSFEM to fluid-structure interaction problems have been documented 

[71, 72, 101].  Both researchers reported problems in determining the appropriate 

boundary and domain weighting factors for the least-squares functional statement of the 

problem.  This is also mentioned in several early (non-FSI) papers covered by the 

Eason’s survey of least-squares applications [46] and was also encountered in the present 

effort. 

                                                 

1 The term is used by Jiang [69] to contrast the LSFEM for solving first-order systems of differential 

equations with the Rayleigh-Ritz method (applicable only to self-adjoint operators) and the Galerkin 

weighted residual method (which exhibits problems with non-self-adjoint systems and is subject to the 

restrictions of the LBB condition for mixed formulations). 
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The sponsor is primarily and ultimately interested in aeroelastic optimization of a 

long-endurance aerospace platform, potentially similar to the AFRL Sensor-Craft 

configuration discussed in Section 1.1.  Joined-wing aeroelasticity has received 

significant recent attention in the literature, much of which emphasized the structural 

nonlinear aspects of the configuration [37, 75, 78].  A linear aerodynamic model and 

structural nonlinear FEM model in [38] identified significant compressive forces in the 

aft wing from the forward wing joint.  Similar nonlinear compressive forces are included 

in the aeroelastic sting model considered in Section 7.3.3.  Other research [131, 132] 

emphasized the importance of modeling both the nonlinear aerodynamics and nonlinear 

structural coupling of the joined wing configuration for dynamic problems.  Most 

significantly, a prior collaboration between AFRL and AFIT [20] identified gust response 

as the critical load condition for a flexible, lightweight joined wing configuration.  This is 

the primary motivation for studying the nonlinear gust response sensitivity that is the 

subject of this dissertation.  We first review, in the next section, the methods previous 

researchers have employed in FSI sensitivity analysis before introducing the least-squares 

continuous sensitivity method in Chapter 3. 

2.3 Sensitivity Analysis of Fluid-Structure Interaction Problems 

We divide the review of sensitivity analysis for FSI problems in to those that use 

classic (numerical approximation and discrete) design sensitivity methods, Section 2.3.1, 

and those that employ continuous sensitivity methods, Section 2.3.2.  Additionally, we 

review some aerodynamic and aeroelastic sensitivity analysis approaches which employ 

adjoint formulations in Section 2.3.3. 
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2.3.1 Classic sensitivity methods for FSI problems 

Just as the majority of FSI analysis is based on segregated methods, so has the 

majority of design sensitivity analysis been accomplished using segmented analysis for 

the fluid and structure domains.  This approach requires a computationally inefficient 

iteration between the fluid and structure systems [79].  Due to the computational expense, 

the vast majority of practical applications in aeroelastic sensitivity and optimization have 

focused on static or steady-state fluid-structure interaction problems [77, 82, 83], or on 

simple linear structure and linear aerodynamic models [33, 85, 86].  The results described 

in Section 7.3 and reported in [137] are the first known published results for nonlinear, 

transient gust response sensitivity.  Overall, research in aeroelastic optimization of 

dynamic problems, including sensitivities of nonlinear flutter to aerodynamic shape 

design variables, is in the very earliest stages of methods development.  Use of 

continuous sensitivity methods is even more limited and is discussed in more detail in the 

next section.  Not surprisingly, the primary limitation of coupled, dynamic fluid-structure 

sensitivity analysis of nonlinear fluid and structure models is the formidable 

computational expense of the analysis: “The computational resources required for even 

one dynamic coupled CSM/CFD [Computational Structural Mechanics/Computational 

Fluid Dynamics] are significant.  Establishing stability boundaries and tracking behavior 

histories, and then calculating sensitivities of those repetitively, cannot yet be carried out 

efficiently and is not expected to be practical in the near future”  [77]. 

An early example of segregated FSI sensitivity analysis by Ghatta [57] used the 

discrete sensitivity method.  This work extended an earlier variational formulation [58] 
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and decomposed the coupled problem into separate fluid and structure domains.  The 

coupled Jacobian between the domains was only approximated in order to avoid a large 

burden of the computational expense associated with inverting the mesh Jacobian that is 

required in the discrete sensitivity method. 

To our knowledge, Lund’s 2001 paper [79] is the first and most widely-cited 

design sensitivity analysis applied to non-segregated FSI.  Lund employed a strongly-

coupled fluid and structure domain to shape optimize (minimize drag) a flexible structure 

undergoing large deformation.  Lund used incompressible Navier-Stokes to govern the 

fluid domain and formulated a solution using the weak-Galerkin approach for both the 

fluid and structure.  Mesh deformation was not included in the problem formulation.  To 

account for the large deformations, a new mesh computation algorithm was used, 

necessitating an iterative solution towards the full sensitivity solution.  This is reportedly 

only a minor-penalty, since an iterative Newton’s method was used to solve the nonlinear 

system. 

2.3.2 Continuous Sensitivity of FSI Problems 

We are aware of only two applications of CSE analysis for FSI problems.  In the 

first,  Newsome [89] used the sensitivity to geometry changes as an input into a structural 

analysis code.  Following the development of Borggaard and Burns [23], Newsome 

employed 2D compressible Euler equations for the CSE fluid domain.  The static 

aeroelastic structural sensitivity was bootstrapped by using the fluid sensitivity solution 

in place of linear, panel-method aerodynamics to calculate sensitivity results.  This was 

valid, if limited, since, as a linear system, the structural governing equations and 
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sensitivity equations will be identical.  This characteristic of sensitivity of linear systems 

is further explained in Section 3.1. 

The second application of CSE appeared in a series of conference papers and 

journal articles by Pelletier and his students at Ecole Polytechnique de Montreal.  

Following the development of a CSE method for the calculation of the flow sensitivity of 

the steady, incompressible Navier-Stokes equations [45, 80], Etienne applied the method 

to a channel flow problem with flexible vertical beams which interacted with the flow 

[49].  This represented the first true application of the CSE method to a fluid-structure 

interaction problem.  This was further extended to unsteady (though still incompressible) 

Navier-Stokes fluid problems in [47, 48].  Though each of these formulations allowed for 

large deformations of the structure, the primary emphasis was on the fluid flow 

sensitivity solution.  This is further reflected in the subsequent research which introduced 

turbulence models into the sensitivity equations [31, 32]. 

All of the applications of Pelletier et al. were formulated using an elasticity-

derived pseudo-solid mechanics (first introduced by Sackinger [112] for free and moving 

boundary fluid dynamics problems) to solve the fluid mesh deformation problem.  

Though all of the work clearly recognized the distinction between the local and material 

derivatives (a distinction that is made more explicit in Chapter 3), the fluid sensitivity 

equations were expressed in Eulerian form and the structure sensitivity equations were 

expressed in Lagrangian form.  The total Lagrangian description of structure is 

referenced to the unperturbed configuration (i.e., the original shape in a shape variation 

problem), and the fluid equations are referenced to the deformed configuration.  This 
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results in mixed-form FSI interface conditions.  The pseudo-solid is used to facilitate the 

expression of the interface conditions in deformed geometry for the fluid and undeformed 

geometry for the structure, but the explicit inclusion of the pseudo-solid results in a 

calculation of the mesh sensitivity along with the fluid and structure sensitivity.  The 

calculation includes a term very similar to the inversion of the mesh Jacobian.  One of the 

primary motivations of the CSE method was avoid the computationally expensive mesh 

sensitivity problem.  Thus the Pelletier CSE method for FSI expressed in mixed-form 

interface conditions included undesirable the mesh sensitivity calculations.  The CSE 

method for FSI developed in Chapters 3 and 7 is formulated in local derivate terms and 

avoids the necessity of calculating the mesh sensitivity. 

As a result of their focus on the flow sensitivity for FSI problems, Pelletier et al. 

did not consider the structural shape variation problem which is the primary interest of 

the present effort.  They claim, not without reason, that they could handle shape variation 

FSI problems since, due to the manner in which they posed their boundary conditions, all 

sensitivity problems behave like a classical shape parameter problems.  That is, changing 

fluid inflow boundary conditions would affect the geometry of the fluid-structure 

interface and hence the solution to the sensitivity problem.  Nevertheless, there are 

certain subtleties to shape variation problems that are best exposed by pure shape 

parameter formulation.  This will be particularly important for structural design 

optimization which is again one of the primary motivating aspects of our research. 

Although developed for an airfoil design optimization problem and not a FSI 

application, Cori and Pelletier [36] introduced a local derivative boundary condition 
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formulation for fluid derivatives in CSE that motivates the approach developed in 

Chapter 3 and is used throughout the present work.  This boundary condition formulation 

can be derived from the total derivative equation and proves particularly simplifying for 

structural elasticity applications.  As will be shown, when the system is posed in local 

derivative form, the sensitivity equations for FSI problems are often simplified 

significantly. 

The impressive work and contributions of Pelletier and his students over the last 

decade have significantly extended the application of CSE methods to FSI problems.  

There are, however, several important distinctions between the present effort and that of 

Pelletier’s, described above, which are now summarized.  The continuous sensitivity 

equations derived in the remainder of this work are completely local formulations and do 

not require the expensive mesh sensitivity calculations that are necessary in the mixed 

formulations of Pelletier et al.  Additionally, the local derivative CSE form is often 

simpler to implement.  Another distinct difference stems from the boundary solution 

approximation that Pelletier et al. employed for fluid domain, identified as one of the 

primary sources of sensitivity error in [45].  We employ a first-order form (inherent to the 

LSFEM implementation) that does not require post-processing approximation of the FSI 

solution to generate the sensitivity boundary conditions.  Additionally, for transient CSE 

applications, such as the gust response sensitivity analysis considered in Chapter 7, our 

method allows a time slice solution of the transient CSEs without requiring a solution to 

the full unsteady sensitivity equations.  It is unclear if the unsteady fluid sensitivity 

problems studied in [47, 48] were able to use this computational shortcut to the 
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sensitivity solution.  Finally, in contrast to Pelletier’s interest in flow sensitivity in FSI 

applications, our primary interest in the aeroelastic analysis is the structural design 

sensitivity and shape parameter gradients in particular. 

2.3.3 Adjoint Sensitivity Methods 

The adjoint equation method was probably first used for optimization in the field 

of optimal control theory [28] before being adopted for structural optimization [60] and 

aerodynamic optimization [65].  Since adjoint methods are computationally attractive for 

large scale problems when the number of design variables exceeds the number of 

constraints and objective functions, we consider an adjoint CSE method in Chapter 8, but 

this is not the main scope of the current research.  We briefly review some of the 

pertinent adjoint sensitivity literature for aeroelastic applications which are interesting 

comparisons to the method derived in Section 8.3. 

Jameson et al. have developed continuous adjoint methods for unsteady 

aerodynamic problems [68, 87].  The ideas are based on earlier adjoint methods 

motivated by optimal control theory approaches to the constrained optimization problem 

[66].  This adjoint sensitivity approach was also applied to aerodynamic shape 

optimization problems [67, 109, 110].  Other researchers have also employed adjoint 

methods in aerodynamic applications to avoid the mesh sensitivity problem [90].  

Another interesting sensitivity approach based on a Newton-linearization of the full-

potential equations was presented in [117]. 
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2.4 Least-Squares Finite Element Method 

Least-squares methods for solving systems of partial differential equations are 

well established.  A least-squares fit was first famously used by Gauss in 1801 to predict 

the orbit of the newly-discovered Ceres [15].  Two centuries later, a 1976 survey paper 

[46] listed more than 240 references and papers detailing application of least-squares 

techniques for partial differential equations.  Despite a rich and successful history of 

applications, the LSFEM has been employed far less frequently than Ritz and Galerkin-

based formulations which are almost universal in all commercial finite element programs.  

The main reason is that differentiability requirements on the finite element shape 

functions are less in these weak integral forms (which permits C0, or at most C1, 

elements) while maintaining symmetric system matrices [105].  The last decade has seen 

a resurgence of interest in least-squares finite element methods; [22, 69, 72, 93, 94, 98, 

100, 101, 105] are just a few examples. 

The recent renaissance of interest may be due in part to the more widespread 

adoption of higher-order p-elements and the realization that C0-elements are permitted in 

the LSFEM if the governing systems are reduced to first-order form.  This is possible for 

both fluid and elasticity domains.  This reflects the LSFEM practicality principle of 

Bochev and Gunzburger [22]: to be practical (that is, implemented with C0-elements and 

a convenient, appropriate norm), a least-squares system should be decomposed and 

transformed into a first-order system.  This often requires the introduction of auxiliary 

variables.  Some authors used first-order system least-squares (FOSLS) [29, 30, 73] to 

refer to these formulations.  Bochev and Gunzburger [22] derived or reported from the 



41 

literature a variety of first-order least squares forms which they showed to be variously 

coercive in the appropriate function spaces. 

The cost of a first-order (mixed) LSFEM formulation is an increase in the number 

of unknowns and hence the degrees of freedom that must be solved.  The additional 

unknowns are typically variables of interest, however (e.g. stress in elasticity or vorticity 

in fluids).  Thus, the LSFEM solution typically improves the accuracy of the desired 

unknown variables over primal variable Ritz/Galerkin finite element methods in which 

the non-primal variables are obtained from post-processing [107].  Furthermore, the 

LSFEM exhibits stable solutions for non-self-adjoint systems which are famously 

problematic for conventional weak Galerkin approaches [69].  Examples of these systems 

include diffusion problems and other purely first-order systems.  The problem with the 

Galerkin formulation in these cases (which include mixed-element methods) is that, when 

a functional exists, the variational form leads to a saddle-point problem for which it is 

difficult to establish stability criteria for the solution.  This is the well-known inf-sup or 

Ladyzhenskaya-Babuška-Brezzi (LBB) condition [27].  More often, the Galerkin 

weighted residual method has no known functional for which the variation is an extrema.  

LSFEM avoids the problem of satisfying the LBB condition for mixed elements since the 

least-squares functional is convex.  The LBB condition becomes increasing difficult to 

satisfy with increasing p-values [4].  A final advantage of the LSFEM is that the 

formulation yields symmetric and positive-definite matrices for which well-conditioned 

computational processes are readily available. 
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Least-squares methods also provide a ready posterior estimate of the system 

residual and hence a built-in measure of the accuracy of the numerical solution.  If the 

LSFEM formulation system is coercive (see Section 4.2.3), then the convergence rate has 

been shown to be optimal [69].  By optimal it is meant that the error is bounded in the 

same manner (order) as the interpolation of the exact solution would be.  If the system is 

further elliptic, then an improved, optimal convergence rate is guaranteed [69].  See 

Section 4.2.1 for further details. 

The various proofs of the existence and uniqueness of LSFEM solutions are based 

on the bounded-inverse theorem and associated mathematics of linear operator theory 

[69, 88].  The LSFEM for time-dependent and nonlinear problems is also well-

established in the literature [69].  Theoretical aspects of the LSFEM are further detailed 

in Chapter 4. 

2.4.1 LSFEM for Fluids 

Least-squares finite elements have been formulated for CFD applications with 

very good results.  Jiang’s textbook on the LSFEM [69] is focused primarily on fluid 

applications and covers a wide variety of different models and formulations: inviscid 

irrotational flow; incompressible viscous, rotational flow; compressible flow, subsonic to 

supersonic; convective transport flow; and fully-coupled interaction between two fluid 

flow domains.  Jiang demonstrates that the LSFEM avoids the need to employ upwinding 

or other artificial viscosity techniques to achieve physical solutions.  Additionally, he 

shows that the LSFEM does not need many of the other numerical “tweaks” needed for 
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conventional CFD methods, e.g. operator splitting, artificial compressibility or viscosity 

for stabilization, preconditioning, and staggered grids. 

Pontaza and Reddy have published a series of important papers that introduce 

spectral methods from LSFEM fluid applications [95, 96, 98, 99].  The importance of 

their work involves establishing improved results for higher-order p-element 

implementations, something that Jiang did not consider in his textbook.  Higher-order 

LSFEMs for fluid applications are now well-established and well-documented.  The 

LSFEM models for fluid flow are presented in Section 4.5 

2.4.2 LSFEM for Structures 

As noted above, to be practical, the LSFEM should be based on a first-order 

decomposition of the governing equations.  This leads to mixed elements, which have 

proven problematic for traditional FEM formulations without specially designed 

elements.  This is particularly true for elasticity problems due to the symmetry 

requirements of the stress tensor and its gradient [3].  Indeed, it took researchers more 

than four decades (beginning in the 1960s until 2003) to develop a stable mixed element 

for elasticity based on polynomial shapes functions.  Theoretically, LSFEM 

implementations avoid the saddlepoint stability problems of other weighted-residual 

methods.  Nevertheless, though stable, mixed-LSFEM solutions for elasticity problems 

can be plagued by slow convergence, perhaps due to the underlying characteristics of the 

physics (e.g., symmetry of the stress tensor).  Thus, the lessons and approaches used for 

stabilizing mixed elements are relevant to LSFEM.  We review these methods in the next 

section and then survey the LSFEM applications to elasticity available in the literature. 
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2.4.2.1. Mixed Elements For Elasticity 

The earliest stable mixed element, the Raviart-Thomas element [55], was 

introduced as a mixed (displacement-displacement gradient) triangular element for 

second-order elliptic (Poisson-type) problems.  Since the second-order, two-dimensional 

(elliptic) elasticity equations are analogous to the second-order elliptic Poisson problem, 

it is natural to expect that the Raviart-Thomas mixed element introduced would also 

apply to plane elasticity.  However, the symmetry of the stress tensor and the gradient of 

the stress tensor changes the structure of the problem significantly. 

One approach for a mixed least-squares element introduced by Cai and Starke 

[30, 73] enforces the stress tensor symmetry weakly by including the equality of the off 

diagonal terms in the system residual.  Another method by the same researchers [29], 

based on a perturbed-form of the Stokes equations, is augmented by pressure and 

displacement gradient variables.  This div-curl decomposition of the elasticity equations 

is essentially a first-order form with displacement as the primal variable.  Components of 

the stress tensor are derived from the displacement fluxes and are not directly available as 

system variables. 

A true mixed-element approach for LSFEM was introduced by Bramble [25] 

which builds upon the use of the 1  (inverse) norm for the elasticity residual developed 

in  [26].  Although not widely cited, the 1  norm is also used in the stress-displacement 

and stress-pressure-displacement first-order LSFEM formulations of Yang [140, 141]. 

 

 
11

0 1

,
sup

H 

 



 

  (2.1) 
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The 1  norm allows second-order derivatives in the residual while still using C0 shape 

functions, however the continuity of stress components across elements is forfeit.  The 

element does have the advantage for elasticity boundary value problems that the 

implemented variables are displacement and stress which are the primary variables of 

interest for our coupled FSI approach. 

The first stable, mixed stress-displacement element for plane elasticity was 

created by Arnold and Winther in 2003 [7, 8].  It is a fairly complicated triangular 

element.  The lowest order element is composed of piecewise cubic functions for the 

stress tensor (minimum of 24 degrees of freedom) and piecewise linear functions for the 

displacement field (6 degrees of freedom).  In 2005, Arnold and Awanou [5], constructed 

the first stable, quadrilateral mixed element which has an even more complicated 

structure.  The lowest order element uses up to fifth-order polynomials for the stress 

tensor (45 degrees of freedom) and piecewise quadratic polynomials for the displacement 

field (12 degrees of freedom).  The stress tensor function space is , ,H div S  , a 

Sobolev-type space (the divergence operator replaces the usual total derivative) defined 

on a domain, , consisting of symmetric matrices.  The displacement vector field 

function space is  2 2,L  R where L2 denotes the Lebesgue space of square-integrable 

functions defined on .  Both mixed elements, the Arnold-Winther and Arnold-Awanou, 

were motivated by the operator relationships implied by elasticity differential complexes 

[3, 6]. 
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Although LSFEMs are theoretically not constrained by the stability problems 

associated with mixed elements, our experience is that LSFEM mixed stress-

displacement elements for elasticity can still be beset by problems of slow convergence.  

Much of this probably stems from the non-coercivity of the implemented forms.  Some 

preliminary observations may indicate a correspondence between the minimum 

polynomial order of the Arnold stable mixed element and the p-order element used in a 

mixed stress-displacement LSFEM solution.  This is further explored in Section 4.2.4. 

2.4.2.2. LSFEM for Elasticity 

The published variational formulations of LSFEM for elasticity problems can be 

classified in three general groups.  They are listed here with the associated dependent 

state variables in parentheses: 

1)  Perturbed Stokes system: velocity-pressure-vorticity (displacement flux, 

displacement) plus curl-free constraint 

2)  Displacement/displacement gradient (strain) 

3)  Displacement/stress 

Both of the latter two methods above require special treatment of the symmetry of 

the strain or stress tensor.  One option discussed in Section 2.4.2.1 enforces the symmetry 

weakly and carries as additional variables for each of the off-diagonal (theoretically 

equal) components of the symmetric tensor.  This is done at the expense of additional 

degrees of freedom.  Another option is to only carry one each of the off-diagonal 

components of the stress tensor.  This leads to an odd number of variables which destroys 

the ellipticity of the elasticity system, however, it represents the minimum number of 
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degrees of freedom required to formulate a mixed-element approximation.  Our results 

for several elasticity examples (some included in Chapter 5) indicate that, although the 

system is no longer elliptic for these formulations, the convergence rate does not suffer 

when compared to strictly elliptic formulations with an equivalent number of degrees of 

freedom.  This conclusion is also supported by results given in [101].  See Section 4.2.1 

for further discussion of ellipticity and convergence rates. 

Pontaza and Reddy published a series of important papers for a range of elasticity 

applications from the bending of thin and thick plates to shear-deformable shells [93, 94, 

97].  Much of their work underscored the importance and value of higher-order p-

elements.  Pontaza and Reddy demonstrated that the LSFEM yields exponential rates of 

convergence without use of reduced-order integration techniques and with moderate p-

order refinement.  Indeed, some preliminary observations stemming from our work have 

precipitated a conjecture that a minimum moderate p-value may be required for LSFEM 

solutions of elasticity problems.  Arnold [4] also noted that it is usually easier to obtain 

stability of mixed elements with higher-order elements.  Arnold pointed out that many of 

the “natural” mixed formulations that were attempted over the years “usually” turned out 

to be unstable and produced poor results (in some cases, converging to the wrong 

solution).  The potential necessity for a minimum polynomial order for elasticity 

problems is further explored in Section 4.2.4. 

Most applications of LSFEM in the literature have dealt with linear elastic 

problems.  The results given in Chapter 7 as well as examples from Rasmussen’s 

dissertation [101] are the first known extensions of the LSFEM to include geometric 
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nonlinearity.  It is noted in Chapter 8 that Newton-Raphson methods for nonlinear 

LSFEM requires a different formulation from that used for traditional Galerkin methods.  

There are some practical limitations to using Newton-Raphson for nonlinear LSFEM and 

the associated linear sensitivity problem.  This is also discussed in Chapter 8. 

2.4.3 Summary of the advantages & disadvantages of LSFEM for FSI 

The original reason for selecting the LSFEM as the computational method for 

fluid-structure interaction problems is that, in contrast to conventional weak-Galerkin 

methods, it is a mixed-element formulation that allows equal approximation accuracy and 

continuity for all variables.  This is particularly convenient for mixed boundary value 

problems inherent to FSI systems, since it gives direct access to the degrees of freedom 

for the kinematic and equilibrium conditions at the fluid-structure interface.  Equal 

approximation of all formulation variables is also an advantage, since the LSFEM 

solution is used to determine the CSE boundary conditions.  Another initially attractive 

aspect of LSFEM is that it is a universal, variationally consistent method that yields 

symmetric, positive-definite matrices, even for non-self adjoint systems, for which robust 

numerical solution methods are available (e.g. preconditioned conjugate gradient).  The 

LSFEM gives optimal rates of convergence and has a built-in posterior error estimate (the 

system residual).  Because of its universal nature, it is also straightforward to formulate 

multiple-domain, fully-coupled systems governed by disparate physics. 

The disadvantages of the LSFEM are relatively slight for single domain problems.  

For structures, some results indicate that LSFEM solutions are less efficient on a total 

degree of freedom comparison to weak-Galerkin FEM [103].  For fluids, LSFEM models 
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have been well-documented in the literature, but are far-less widely employed than finite 

difference and finite volume CFD approaches.  Additionally, mass conservation is not 

guaranteed (unless it is explicitly included in the residual formulation).  The implication 

of this is still an open research question. 

The disadvantages of the LSFEM approach for multiple-domain (e.g. fluid-

structure) problems are more significant.  This primarily stems from the sensitivity to the 

domain and boundary weighting factors.  Eason’s 1976 survey paper [46] lists a dozen 

early attempts for different weighting strategies for problems involving multiple 

boundary conditions, mixed methods, and systems of differential equations.  Rasmussen 

[101] explored many weighting strategies specific to least-squares fluid-structure 

problems and concluded that most of the strategies were either impractical or did not 

work.  The few strategies that did work required multiple iterations and an outer-loop to 

balance the domain residual error between the fluid, structure, and boundary functionals.  

Rasmussen also concluded that equation-level weighting may also be required to achieve 

satisfactory results.  Kayser-Herold experienced similar problems in his solution of FSI 

problems via LSFEM [71]. 

2.5 Summary 

This chapter documented the known limits of the published literature for three 

main topics: continuous sensitivity analysis methods, fluid-structure interaction analysis 

methods, and least-squares finite element methods.  The LSFEM is very well 

documented, though its use to solve FSI problems is limited to two recent works [71] and 

[101].  Continuous sensitivity methods were originally introduced for solid mechanics, 
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but very few practical applications are known ([92, 138] excepted).  The vast majority of 

published work on CSE applications has been done for fluids problems.  We are also 

aware of no work that uses least-squares to solve the CSEs.  Continuous sensitivity 

analysis of FSI problems is also fairly limited, however ongoing research by Pelletier et 

al. has developed good results using Galerkin methods and the incompressible Navier-

Stokes equations, though the primary focus of their work is on the fluid sensitivity 

solution.  The continuous sensitivity equation method is theoretically developed in the 

next chapter. 
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3 Continuous Sensitivity Equation Method 

The continuous sensitivity equation (CSE) method for obtaining design parameter 

gradients is derived in Section 3.1.  Although CSE can be applied to material and sizing 

type parameter sensitivity problems, the more difficult (from a conventional design 

sensitivity approach) and interesting applications are to shape variation problems.  Thus, 

this is the focus of the present effort and the determination of the CSE boundary 

conditions is described in Section 0.  Section 3.3 makes an important distinction between 

local and total derivative types and demonstrates the distinction with a useful example 

problem.  Section 3.3.2 presents an argument that the local CSE form is superior to other 

forms of the CSE method, particularly for FSI problems.  This is made more explicit in 

Section 3.3.3 which compares the local derivative form adopted in the present work with 

Pelletier’s mixed derivative form.  Section 3.3.3 summarizes the CSE approach and the 

advantages of the local derivative form. 

3.1 Continuous Sensitivity Equations 

Consider the following general, nonlinear boundary value system defined in a 

domain  with a boundary  for which we seek a solution u of the equations 

   in ΩA u u f  (3.1) 

    on  B u u g  (3.2) 

where  A u  is a first-order, time-space differential operator given by 

dim

1
t

i it x

 
  

  i 0A A A A  (3.3) 
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The system is nonlinear if the operator A is a function of the solution u, or  B u ,the 

boundary operator 

dim 1

1
t i

i it 





 
  

  0B B B B  (3.4) 

is a function of u.  The boundary operator (3.4) specifies the boundary condition 

(solution) for u on .  In (3.4), i denotes the coordinates that parameterize the boundary 

which are naturally at least one dimension less than the domain dimension. 

The sensitivity of the solution u to a design parameter, b, is 
b



u

.  For example, the 

first forward difference for approximating the design sensitivity is 

     
b

b b b

b b




 
  


u uu

u  (3.5) 

Besides the computational expense involved in solving the system twice, a drawback of 

the finite difference method is the challenge of determining the optimum step size, b .  

Large steps are dominated by truncation error (which can be significant if the system is 

nonlinear) and small steps are dominated by numerical round-off error, Figure 3.1.  

Another shortcoming of the finite difference approach when b represents a shape 

parameter is that the finite difference calculation approximates the material (or total) 

derivative and not the desired local derivative, 
b



u

.  This is further discussed in Section 

3.3. 
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Figure 3.1: First-order finite difference approximation error example 

The continuous sensitivity method avoids the numerical shortcomings of finite 

difference methods by differentiating the field equations (3.1-3.2) to yield a governing 

continuous system of equations for the desired sensitivity variables.  So differentiating 

(3.1) with respect to a design parameter, b, yields 

       0 , ,; ; ; ;i i t tb b b b
b b

          
A u u A u u A u u f x  (3.6) 

where the subscripted comma notation denotes partial differentiation.  Equation (3.6) in 

component form (with Einstein summation notation implied) is 

             0
, ,; ; ; ;k t

ij j ij j k ij j t ia b u a b u a b u f b
b b

          
u u u x  (3.7) 

where the parenthetical superscript is used to denote the operator.  Thus, k is an index 

ranging from one up to the domain dimension, domainn .  Equation (3.7) expands as  

truncation error round-off error 

decreasing step size  

F
D

  
er

ro
r 
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 

   
 

   
   

0 0
0 ,

, ,

,
, ,

...

;

k k
kij ij j ij ij j km m

j j ij j k j k ij
m m

t t
tij ij j tm

j t j t ij i
m

a a u a a uu u
u u a u u a

b u b b b u b b

a a uu
u u a f b

b u b b b

         
        

             

   
  

    
x

(3.8) 

Since the spatial-temporal derivatives are independent operations from the sensitivity 

derivative, the order of differentiation may be reversed.  Note that this commutation of 

differentiation is not possible if the sensitivity derivative in (3.6) is not a local derivative 

[59].  The mu

b




 terms are referred to as the sensitivity variables; they represent how the 

solution changes with respect to a design parameter.  Collecting the sensitivity variables 

in (3.8) then yields the continuous sensitivity system 

 
     

   

 
     

0
0 , ,

, ,

0

, ,                                        ;

k t
k tij ij ij m k m tm

im j j k j t im im
m m m

k t
ij ij ij

i j j k j t

a a a u uu
a u u u a a

u u u b b b

a a a
f b u u u

b b b b

                         
   

   
     

x

 (3.9) 

Notice that (3.9) is in the same form as (3.1) with (3.3) operating on the sensitivity 

variable ,bu  instead of the original field variable u .  That is 

     0 , , , , 0, , , , ,, ,
;b

b i b t b b b i b i t b ti t
b                   A u A u A u f x A u A u A u  (3.10) 

The first bracketed matrix term in (3.10) is identified as the 0
b A  sensitivity matrix, which 

is defined in component form by 

   
     0

0 0
, ,

k t
b il il il

ij ij l l k l t
j j j

a a a
a a u u u

u u u

  
   

  
 (3.11) 
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This may also be expressed in matrix form as 

              

              
             

1 2

1 1 2 1 1

1 2

0 0 0, 0, 0,

1, , 1, , 1, ,

, , , , , ,

0 ... 0 0 ... 0 0 ... 0 ...

               0 ... 0 0 ... 0 0 ... 0 ...

               0 ... 0 0 ... 0 0 ... 0

n

n

n n n

b
u u u

u x u x u x

n u x n u x n u

              
             
        

A A A u A u A u

A u A u A u

A u A u A u 
              

1 2, , , , , ,

...

               0 ... 0 0 ... 0 0 ... 0

n

n

x

t u t t u t t u t

   
            A u A u A u

(3.12) 

This may be written more compactly as 

0
0 0 , ,

b k t
i ji i k ji i t ji

i i i

u u u
u u u

                   
A A A

A A  (3.13) 

Finally, the CSE system associated with (3.1) may be written in compact form as 

b b

b
       
A A

u A u f u
u

 (3.14) 

where i ji
i

u
u       

A A
u

u
. 

In (3.14) we introduce a superscript prefix notation, bu , to denote the sensitivity 

variable that is determined by solving the CSEs.  In the examples below when an analytic 

solution is available, the bu  solution will be treated as distinct from an analytic 

sensitivity, denoted by ,bu .  The analytic solution notation will be used to represent the 

sensitivity determined by taking the derivative of an analytic solution u  to equations 

(3.1-3.2).  We also introduce notation for the finite difference operator,  b u , given by 

(3.5), and the material derivative operator,  bD u , defined in the next section. 

Note that the gradient operators, the iA ’s in (3.3), are unchanged for the CSE 

system, (3.10).  Further, for linear systems, the sensitivity matrix 0 0
b A A .  Equation 
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(3.9) includes both the explicit dependence of the system solution on b (e.g. as with 

sizing or shape sensitivity), as well as the implicit, nonlinear dependence of the system 

solution on b (e.g. as in shape optimization).  Additionally, in shape sensitivity problems, 

where b represents a boundary shape parameter, the system operators typically have no 

explicit dependence on b and the brackets terms on the right-hand side of (3.10), e.g. 

,i bA , vanish.  Thus, for linear, shape variation problems, the component CSE operators 

are identical to the original system operators. 

Note also that the continuous sensitivity system (3.10) is always linear in the 

sensitivity variable, ,bu , even when the original system is nonlinear.  The conclusion that 

only the 0
b A  operator changes for a nonlinear system is due to the assumption that 

system (3.1-3.2) only being nonlinear in u.  If the nonlinearity appeared explicitly in a 

derivative of u, , xu for example, then 

       
dim

, , ,
1

x x x
i ix

       i 0A u A u A u  (3.15) 

and only the 1
b A  component operator of the CSE system would differ from the 

component operators of the original system.  The general conclusion is that the CSE 

system will differ from the parent system in whichever operator component represents the 

nonlinearity.  Note that when the parent system is written in first-order form, the 

nonlinear problem can always be factored so that the nonlinearities appear explicitly in u.  

Table 3.1 summarizes the form of the CSE operators in terms of the original system 

operators from (3.1) for both linear and nonlinear systems, as well as shape variation 
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problems (with no explicit dependence on the design parameter) and non-shape variation 

problems with explicit dependence on the design parameter. 

Table 3.1:  Summary of CSE operators in first-order form 

Problem Type 0
b A    1,..., ,b

k domk n tA bf  

Linear, shape 0A  kA  0  

Linear, explicit b 
(size, material) 0A  kA   , 0, , ,;b b k b kb    f x A u A u

Nonlinear, shape 0
b A  kA  0  

Nonlinear, explicit b 
(size, material) 0

b A  kA   , 0, , ,;b b k b kb    f x A u A u

 

We now illustrate the formulation of the CSE system (3.10) with a nonlinear 

example.  Consider the 1D, nonlinear system with an explicit dependence on b (this is not 

necessarily a physical example, but it demonstrates all aspects of the formulation of the 

CSE system) 

2
1

, 22 x

bu u v f

uv v uv f

 
  

 (3.16) 

which has the matrix operator form, 0 1 ,x A u A u f , of 

2
1

2,

0 0

02 x

fu ub u

fv u vv

        
         

        
 (3.17) 

Using (3.12), the CSE 0
b A  operator is 

2

0

, ,

, ,

0 2 0 0 0 0
...

0 0 0 1 0 02

0 0 0 0 0 0
           

0 1 0 0 0 0

b

x x

x x

u u ub u

v vv

u u

v v

              
                

              
                           
                   

A

 (3.18) 

or 
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2

0
,

0 02 0 0 0
  

00 0 02
b

x

uvb u
vuv

      
         

      
A  (3.19) 

The 1A  for the CSE system is the same as in (3.17).  The total CSE system is thus 

2
1,

, 2,,

2 0 0

2 0 0

b b
b

b b
x bx

fb uv u u u u

v v u u fv v

                                             
 (3.20) 

which is the same result obtained by differentiating (3.16) with respect to b and 

rearranging terms 

2
, , , 1,

, , , , , , 2,

2

2
b b b b

b b b b x bx b

bu uvu u v f u

u v uv v u v uv f

   

    
 (3.21) 

or in matrix form 

2
1,

, 2,,

2 0 0

2 0 0

b b
b

b b
x bx

fb uv u u u u

v v u u fv v

                                             
 (3.22) 

To summarize, the CSE system is defined by differentiating the continuous system (3.1)

with respect to the design parameter of interest.  The result is a system of differential 

equations, (3.14), which may be solved, with the appropriate boundary data, to yield the 

desired parameter sensitivity solution.  The CSE boundary conditions are considered 

next. 

3.2 Boundary Conditions for Shape Variation CSE 

The boundary conditions of the sensitivity equation specify how the sensitivity 

variables behave on the boundary of the domain.  Thus, the sensitivity of the boundary 

operator system may be written as a first-order CSE system analogous to (3.14) 
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   

   

0
0 , ,

, 0, , ,                                         ;        on 

b b
i ji i ji

i i

b b b

u u
u u

b b


  

 

 
             

    

BB
B u B u

g x B u B u

 (3.23) 

where  denotes coordinates that parameterize the boundary (which has dimension of at 

least one less than the domain).  The continuous sensitivity domain equations, (3.9), is 

simply another system of differential equations, which, given with the appropriate 

boundary data, (3.23), represents a well-posed boundary value problem that may be 

solved by a wide variety of numerical approaches.  It is convenient in many cases to use 

the same numerical method and framework to solve the sensitivity system as was used to 

solve the original system. 

For shape variation problems, the boundary  is a function of the design 

parameter b and the evaluation of (3.23) must account for the total variation of a material 

point on the boundary.  For a scalar, u, the Eulerian and material points are related 

through the total (material) derivative 

 b

Du u
D u u

Db b b
 

   
 X x X

X
 (3.24) 

where  bD   is the material derivative operator with respect to the parameter b, X denotes 

a material coordinate and x denotes a spatial coordinate (Eulerian description).  Thus the 

total derivative of u with respect to b at a material point X consists of the local derivative 

of u with respect to parameter b and the convective transport term which accounts for 

how the material point X moves as the design parameter b varies.  For the vector quantity 

u, the local derivative, gradient operation, and dot product in (3.24) are carried out 
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component-wise.  Solving (3.24) for the local derivative gives the desired sensitivity 

boundary condition for the CSE system 

 bb D

b Db b



 


   
 X

Xu u
u u  (3.25) 

where in 2D 

      ,b x y b  X  (3.26) 

are the coordinates (ordered pairs in R2) that define the boundary as a function of b.  The 

first term on the right side of (3.25) accounts for how the boundary conditions for the 

problem change with respect to the design parameter.  This term is often zero; that is, the 

nature of the boundary condition often does not change as the shape changes.  For 

example, the boundary conditions for the fixed end of a cantilevered beam are zero 

displacement and rotation at the root.  A shape variation parameter can move the location 

of the root in an Eulerian reference frame, but the material point at the root will still be 

fixed and the displacement and rotation boundary conditions are still those of a 

cantilevered beam.  Some examples are considered in Chapters 5 and 6 where the first 

term on the right-hand side of (3.25) does not vanish, but these tend to be the exception to 

most applications. 

The transport term in (3.25) (the second term on the right-hand side) is the dot 

product of the derivative of the set of spatial coordinates that define the boundary with 

the gradient of the solution to (3.1)-(3.2).  Again, in the case of vector quantities, the 

gradient operation is carried out row-wise. 
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Contrast (3.25) with the classic continuum stress sensitivity expression derived by 

Dems and Haftka [39] 

 ,
,

b i k k
ij j ij k j ij j l jl k

l

DT
n n n n n

Db b b

             
 (3.27) 

where Ti are the components of the surface traction vector, ni are the components of the 

unit normal vector,  is the Kronecker delta function, and  is the transformation field 

that maps material coordinates of the domain as a function of the design parameter.  

Equation (3.27) is valid on the boundary and throughout the domain.  We now show that 

(3.27) is equivalent to (3.25) when the latter is expressed in coordinates normal and 

tangential to the boundary surface.  First, take the stress vector [108] 

   ˆˆ
Tn n

s

T

T





              

nn T  (3.28) 

where n  and   are the normal and shear components of the stress vector.  At any point 

in the normal-tangential coordinate reference frame on the boundary, we have 1 1n   and 

2 0n  .  For the normal stress component, 11 1n n  , and  1 1 0l ln n    so that the final 

term in (3.27) vanishes, when it is also expressed in the normal-tangential coordinate 

reference frame.  Similarly, for the tangential shear stress component, 21 1n   and 

 1 1 0l ln n    so that the final term in (3.27) again vanishes.  Thus expanding (3.27) in 

2D and evaluating the expression in a normal-tangential coordinate system yields 

 

 
11,1 1 1, 11,2 1 2,111

,
21,1 1 1, 21,2 1 2,221

b b
b b nn

bb b
b b b

n nTD D
n nTDb Db 

     
     



          
                      

n
T

X  (3.29) 
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Note that  evaluated on the boundary yields the coordinates of points on the boundary.  

The advantage of using (3.25) over (3.27) is that (3.25) only requires a description of how 

the boundary varies with respect to the shape parameter.  In (3.27), the shape variation of 

the entire domain must be defined through the transformation field.  In both cases, the 

choice of boundary parameterization,  bX , or the transformation function, , is 

analogous and not necessarily unique; however some choices can simplify the problem 

description and solution.  This is demonstrated in an example below. 

To reiterate, the continuous sensitivity system is a linear boundary value problem 

derived by taking the derivatives of the original field equations, (3.1-3.2).  The set of 

sensitivity boundary condition data are of the same form as for the original problem.  

However, if the design parameter is a shape parameter that alters the Eulerian points of 

the boundary, the set of boundary conditions from the parent problem on the boundary 

that moves must be expressed in the form of (3.25).  The continuous sensitivity equations 

may be derived in either total or local derivative form.  When expressed in local form as 

derived above, (3.8) and (3.23), only the boundary parameterization need be described.  

In total derivative form, the parameterization or transformation function for the entire 

domain is necessary which is equivalent to having to solve the mesh Jacobian. 

The simplicity of the local CSE form is not always used to greatest potential.  

This was true of (3.27), which though general, could be significantly simplified through a 

wise choice of boundary degrees of freedom and boundary parameterization.  This also 

arises in the sensitivity boundary condition for an FSI example from [49] which uses the 

mixed reference configuration form described in Section 2.3.2 
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   
0 0

1
0 0 0 1 1 0s s

s T T T T s s
l l f f f ps ps f ps psn n

n s s J J s n n                                    
F F F F (3.30) 

Not all the terms in (3.30) need be defined to realize the complexity of the FSI interface 

condition when written in mixed form.  psF  is the deformation gradient tensor of the 

continuous fluid mesh and J is its Jacobian.  These terms are equivalent to the 

transformation field of [39].  The inverse operation of the mesh mapping is clearly 

evident in (3.30).  The mesh sensitivity gradient terms could probably be eliminated from 

(3.30) by using the corresponding structure deformation on the interface boundary (which 

is enforced to be equal to the mesh deformation at the boundary) instead of the pseudo-

solid.  The domain Jacobian and its inverse also appear in the continuous sensitivity 

domain parameterization methods [59].  Posing the CSE system in local derivative form 

(with local derivative boundary data) avoids the numerical complexity and expense of the 

mesh and domain Jacobian calculations.  Next we discuss how to relate the local and total 

derivative sensitivity forms. 

3.3 Local and Total Derivatives 

The local derivative is the derivative at an Eulerian point (a particular point in 

space in an Eulerian reference frame).  In a Lagrangian description, the total derivative 

(also called the material derivative) of a field variable consists of both the local derivative 

and the change that is due to transporting a material point through Eulerian space.  For 

some applications, notably fluid optimization problems, the sensitivity at an Eulerian 

point is appropriate.  For structural optimization and FSI sensitivity, however, the 

sensitivity at a material point is generally desired.  It is possible to pose the shape 
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variation CSE system in terms of the total derivative; however, as demonstrated above, it 

is usually more convenient to solve for the local sensitivity.  The total sensitivity for the 

shape variation problem may then be recovered from the local sensitivity solution by 

application of (3.24).  Although the conversion to the material derivative requires the 

transformation function for the entire domain, it is not required for the solution of the 

CSE problem in local form.  Additionally, the conversion to the material derivative does 

not require a solution to the inverse mapping function, or equivalently, an inversion of the 

mesh Jacobian.  Furthermore, if the sensitivity is only required on the boundary, then the 

boundary parameterization, (3.26), alone is sufficient to calculate the desired material 

sensitivity.  A domain transformation function need not be defined. 

3.3.1 Local and Total Derivative Example 

Consider, as an example, the equations governing the stress and displacement for 

the 1D elastic structure (bar) depicted in Figure 3.2 

 
,

0x xx
A f    (3.31) 

, 0x xEu    (3.32) 

 

Figure 3.2:  Bar sensitivity example 

L
x

 xf x L x 

1 : 0u  2 : x P A 

P
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where u is the axial displacement, x  is the axial stress, Ais the cross-sectional area of 

the bar, fx is the applied body force, and E is Young’s modulus.  Equations (3.31) and 

(3.32) may be directly integrated to yield the stress and displacement solutions, which, 

for no tip load, P=0, and constant cross-sectional area yields 

 
2 2

;
2 2x

x Lx L
x L

A A A
     (3.33) 

 
3 2 2

;
6 2 2

x Lx L x
u x L

EA AE AE
    (3.34) 

These are functions of the shape parameter, L, the length of the bar.  The analytic (local) 

sensitivities of displacement and stress to bar length are then 

 ,x L

L x
x

A A
    (3.35) 

 
2

, 2L

Lx x
u x

AE AE
   (3.36) 

which are plotted in Figure 3.3.  This can also be calculated by solving the corresponding 

CSE to (3.31) and (3.32) 

,

1
0L L

x x xf
A

    (3.37) 

,

1
0L L

x xu
E

   (3.38) 

where 1L
xf  .  The sensitivity boundary conditions are determined from (3.25).  

Parameterize the boundaries with respect to beam length as 

   
1 2

0   ,    L  X X  (3.39) 

The bar remains fixed at the base regardless of the bar length, so the total derivative of 

displacement at the origin is zero.  Additionally, based on the parameterization of (3.39), 

the material point at the base of the bar does not move with changes in bar length, that is 
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1 , 0L X .  Thus, the convection term in (3.25) is zero at the origin.  Since the load at the 

tip of the bar vanishes at L, the gradient of the axial stress is zero and the total derivative 

at the tip is also zero.  The sensitivity boundary conditions are then 

0    at 0Lu x   (3.40) 
0  at L

x x L    (3.41) 

Integrating (3.37) and (3.38) with the boundary data (3.40) and (3.41) yields the solution 

to the sensitivity variables 

 L
x

L x
x

A A
    (3.42) 

 
2

2
L Lx x
u x

AE AE
   (3.43) 

which matches exactly the result, (3.35) and (3.36), obtained from differentiating the 

analytic solution.  The total sensitivity and finite difference sensitivity are also plotted in 

Figure 3.3.  Finite difference results are by nature approximations to total derivatives.  

For optimization with respect to a cost function in terms of material points, the total 

derivative is often desired.  To convert the local sensitivity, (3.42) and (3.43), into a total 

derivative, we must define a domain transformation function that is compatible with the 

boundary data (3.40) and (3.41).  An obvious choice defines the material points of the 

domain by 

    | ;  0,1x L x L     X  (3.44) 

This expression is equivalent to the domain transformation field used in the continuum 

approach of Dems and Haftka [39].  The local sensitivities, (3.42) and (3.43), are now 

converted to total sensitivities by adding the convection term to the local sensitivity.  

Thus the total sensitivity for displacement is given by 
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  , , , ,L L L L xD u u u u xu     X  (3.45) 

or, substituting (3.43) into (3.45) for the first term and differentiating (3.34) and inserting 

the result in the second term 

 
2 2 2

2 2 2L

Lx x x Lx L
D u x x

AE AE EA AE EA

 
     

 
 (3.46) 

Similarly, the total stress sensitivity is 

 L

L x x L
D x x

A A A A
      

 
 (3.47) 

The total derivatives for stress and displacement are also plotted in Figure 3.3 and match 

the finite difference results.  The convection term used to convert the local sensitivity to 

total sensitivity is also plotted in Figure 3.3. 
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Figure 3.3:  Bar sensitivity comparison 

In this example, the sensitivity equations could be directly integrated to give an 

analytic solution to the CSE system.  For more complex geometries and systems, a 

numerical solution, e.g. finite elements, is necessary to specify the boundary conditions 

for the sensitivity equations, but the initial steps are the same.  It is usually possible to 

parameterize the domain in such a way that the material derivative vanishes on a 

boundary so that the sensitivity boundary conditions are determined solely by the 

convection term in (3.25).  The solution to the original system is used to generate the first 

term in the convective part of the sensitivity boundary conditions (3.25).  Also note that 
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the parameterization of the boundary used in the second term of the convective part of 

(3.25) is not unique.  In this example, the domain was parameterized by (3.44) so that 

material points at the tip of the bar moved to the right in Eulerian space as the beam 

length increases.  The domain definition could have also been parameterized so that 

material points at the base of the bar moved to the left in Eulerian space, while the tip of 

the bar remains fixed in space.  Figure 3.4 compares these two domain parameterization 

options.  In the second, (3.44) becomes 

    1 | ;  0,1x L L x L       X  (3.48) 

in which case 

    , 1 | ;  0,1L x x L      X  (3.49) 

With this domain parameterization, the sensitivity boundary conditions are now 

   
2

,0 0 =    at 0
2

L
L

L
u u x

EA   X  (3.50) 

   , 0  at L
x LL L x L      X  (3.51) 

 

Figure 3.4:  Two options for bar domain parameterization 

Integrating (3.37) and (3.38) with this boundary data (and with 0L
xf   since 1xf x   

for this parameterization), yields 

,L  X

    | ;  0,1x L x L     X

    1 | ;  0,1x L L x L       X

    , 1 | ;  0,1L x x L      X
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 
2

2
L L
u x

EA
  (3.52) 

  0L
x x   (3.53) 

for the local sensitivities which are different results than obtained in (3.42) and (3.43) due 

to the difference in parameterization.  This highlights that the local derivative depends 

upon the domain parameterization.  However, the total derivatives of this 

parameterization 

   
2 2 2

1
2 2 2L

L x Lx L
D u x x

EA EA AE EA

 
     

 
 (3.54) 

   0 1L

x L
D x x

A A
      

 
 (3.55) 

do match the total derivative results obtained in (3.46) and (3.47).  Careful comparison of 

(3.46) with (3.54) and (3.47) with (3.55) reveals that aside from the local sensitivity 

solution, only the domain parameterization component of the convective term is different.  

As implied by the free choice of the transformation field in (3.27), local sensitivities 

(which are functions of spatial coordinates) are not unique and depend on the choice of 

domain or boundary parameterization.  However, the total derivatives, which are given at 

material coordinates, are unique.  The CSE problem is generally simpler to pose and 

solve in terms of local sensitivities.  Equation (3.45) then gives a straightforward means 

to convert the local sensitivities from the CSE solution to total sensitivities for 

optimization. 
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3.3.2 Potential Pitfall from Neglecting Local/Total Derivative Distinction 

This distinction between local sensitivity values and material point sensitivity 

values is at times overlooked in the literature and can contribute significant error to 

sensitivity solutions if they are mixed within a single computational approach.  For 

example in [11, 59], the researchers note that  

For beam and plate structures the derivative of the displacement field with respect to 
geometric variables is usually not a legitimate displacement field (for example, it may 
grossly violate the Kirchhoff assumption).  The FEM approximation to this illegitimate 
field is a valid, though highly unusual, displacement field, which requires large self-
canceling components in the pseudo-load.  As the FEM mesh is refined, the pseudo load 
required to generate du/dx acquires ever larger self-canceling components.  Thus the 
errors in the pseudo load due to the FD derivative of the stiffness matrix can be greatly 
magnified. 

This is in reference to an error observed for shape variation problems when using 

the semi-analytic sensitivity method.  The semi-analytic method is a sensitivity approach 

based on moving the discrete stiffness sensitivity term to the right-hand side to form a 

pseudo-load 

, , ,b b b Ku f K u  (3.56) 

where the ,bK  sensitivity is approximated by finite difference (which is a material 

derivative) 

   b b b

b b




 



K KK

 (3.57) 

In [11], the semi-analytic method produces grossly erroneous sensitivity results for a 

shape variation problem which get increasingly worse as the mesh is refined.  The 

researchers’ “prove” that this is attributable to the sensitivity field not being a legitimate 

displacement field.  However, this is only true for the total derivative field, a distinction 
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that is not made in [11, 59].  The proof starts with the equation for the bending and 

rotation of a beam: 

2 2 2

2 2

M M
w x L

EI EI
   (3.58) 

dw M M
x L

dx EI EI
     (3.59) 

which is written in both Eulerian, x, coordinates and Material, , coordinates.  They then 

show 

2dw M M d d M x
x L

dL EI EI dx dL EI L

      
 

 (3.60) 

so that 

2dw w

dL L
  (3.61) 

but 

d

dL L

 
  (3.62) 

They thus conclude that the beam sensitivity field variables are not the solution to a beam 

field problem.  Equation (3.60) is actually a total derivative.  Although expressed and 

used as a local derivative, as soon as the substitution x L   is made it becomes a 

material derivative.  What the researcher’s have proven is that (in our notation) 

L L

d
D D w

dx
   (3.63) 

Following the same argument as the proof, but with a proper distinction between the local 

and total derivative form, one has 

, ,

2
0L L L

Mx x w
D w w w

EI L L
     X  (3.64) 

and 
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, , 0L L L

M x
D

EI L L

       X  (3.65) 

So that 

L Ld
w

dx
   (3.66) 

Thus, although the total derivative is not a “legitimate” beam displacement field, the local 

derivative is.  In fact, if it were not, the continuous sensitivity equation method would not 

work.  The failure to make a distinction between local and material derivative for shape 

variation problems is not uncommon.  Nowhere in the literature is the distinction made as 

explicit as it has been made in this section. 

3.3.3 Comparison of local derivative and Pelletier’s mixed derivative FSI forms 

We introduce the fluid-structure interface relations, theoretically developed in the 

next chapter, in order to compare the local derivative form adopted in the present work 

with Pelletier’s more complicated mixed derivative form.  The FSI interface boundary 

conditions in both approaches are the same and are based on 1) continuity of 

displacement and velocity of the boundary, and 2) force equilibrium between the fluid 

stress and structure stress tensors at the interface. 

Pelletier et al. adopt a pseudo-solid mesh deformation scheme for the fluid 

domain that permits an Eulerian fluid description and Lagrangian structure description.  

The structure displacement deforms the pseudo-solid which satisfies condition 1) above, 

but there is no requirement to balance the surface tractions between the structure and 

pseudo-solid.  The difficulty for sensitivity analysis arises when the interface conditions 

are differentiated.  The mixed derivative form (the Lagrangian structure is referenced to 
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the unperturbed configuration) necessitates an inversion of the pseudo-solid deformation 

gradient tensor [49] which is equivalent to inverting the mesh Jacobian.  The final form 

for the sensitivity interface based on condition 2) is (3.30).  Contrast this with 

Error! Reference source not found.Error! Reference source not found. which avoids 

the mesh Jacobian calculations because the structure derivatives are expressed in local 

form.  This essentially describes an Eulerian/Eulerian description of the fluid-structure 

interface.  Since the material derivative is generally desired for the structure, the local 

sensitivity solution must be converted to total derivative form using (3.24). 

3.4 Summary of Advantages of Local Derivative CSE 

The continuous sensitivity equation method, a useful approach for calculating 

design sensitivities, is particularly attractive for shape variation problems since it avoids 

the expense of mesh sensitivity calculations of discrete sensitivity methods.  However, 

the CSEs can be posed in total derivative, local derivative, or mixed derivative form and 

the choice can negate some of the computational advantages of the CSE method.  Local 

sensitivities for shape variation problems are functions of the choice of boundary 

parameterization, which is not unique.  The advantage of writing the CSE system in local 

derivative form is that only the boundary parameterization need be described.  

Furthermore, the CSE problem is generally simpler to pose in terms of local sensitivities 

than it is in total or mixed form (which necessarily must account for the transpiration of 

material coordinates in shape sensitivity problems).  A comparison of (3.30) and 

Error! Reference source not found.Error! Reference source not found., which 

represent the same FSI interface condition in different forms, makes this point readily 
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obvious.  Since structural optimization for FSI will generally be carried out with respect 

to material coordinates, the local CSE solution will have to be transformed to total 

derivate form, but the computation required to do so on a boundary does not require the 

definition of the domain transformation field.  If domain sensitivity is desired, the local 

CSE solution can still be transformed to total form, if a domain mapping is defined that is 

compatible with the boundary parameterization.  The computational expense should still 

be less for this approach than for posing the CSEs in total form, since the total derivative 

form requires either the inversion of a domain transformation function, mesh Jacobian, or 

domain Jacobian. 

Another advantage of posing and solving the CSEs in local form is that the same 

numerical solution method can be used for both the analysis and sensitivity problems.  

For example, a the local CSE form for a linear system can use the same solver with just 

different boundary conditions since the equations (when written in local derivative form) 

are identical.  Even nonlinear “black box” solvers can used for both system, under certain 

conditions explained in Chapter 8, even though the equations are different.  A total or 

mixed derivative form does not preclude this, but the more complicated form of the 

equations can make implementation more complicated than it is for the local CSE form.  

This is further explored in Chapter 8.  We first describe the theory of the least-squares 

finite element method in the next chapter before solving example problems in subsequent 

chapters. 
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4 Least-Squares Finite Element Method 

Section 2.4.3 outlined the motivation for using the least-squares finite element 

method for fluid-structure interaction problems.  This chapter describes the theory of 

LSFEM (Section 4.1).  Section 4.2 then describes the higher-order p-elements employed 

in the LSFEM solver coded in MATLAB® that is used to solve the example problems in 

subsequent chapters.  One of the attractive possibilities of LSFEM are alternate norm 

formulations which are studied in Section 4.3.  An original method for improving matrix 

condition number of LSFEM models is demonstrated in Section 4.4.  Then the specific 

LSFEM formulations for five fluid models (Section 4.5), four elasticity models (Section 

4.6), and the transient LSFEM formulations (Section 4.7) are presented.  Finally, the 

fluid-structure boundary interface relations are described in Section 4.8. 

This chapter contains a large amount of information that is not necessarily needed 

or used for the sensitivity solutions in the subsequent chapters.  For example, six different 

LSFEM fluid models are derived in Section 4.5, although only three are used in the FSI 

examples presented in Chapter 7.  The main intent of much of this chapter is to document 

the theory and models that were developed, though not always used, for the benefit of 

future researchers. 

4.1 Variational Least-Squares 

A LSFEM model minimizes the norm of the residual (or error) of the governing 

differential equations for the boundary value problem 

 in ΩAu f  (3.1) 

  on  Bu g  (3.2) 
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where the operator notation of (3.1)-(3.2) was described in Section 3.1.  The linear form 

of the boundary value system is given here and in the derivations that follow, but LSFEM 

works for both linear and nonlinear systems.  The weighted sum of the squares of the 

system residuals defines the least-squares functional 

  2 2
; ,   J  

 u f g Au - f Bu - g  (4.1) 

where   is a relative weighting parameter for the residual of error in the boundary 

condition and the residual of the governing differential equation (both expressed in terms 

of the L2 norm).  Equation (4.1) represents a weak enforcement (i.e., integral sense) of the 

boundary conditions.  The boundary conditions could alternatively be imposed directly 

on the boundary degrees of freedom which is referred to as strong enforcement of the 

boundary conditions.  A necessary condition for u to minimize (4.1) is that the first 

variation of (4.1) vanishes at u [56].  This yields an equivalent bilinear-linear inner 

product form [105] for the boundary value system (3.1)-(3.2). 

   , = ,     B l  u v f v v V  (4.2) 

where the bilinear-linear inner product form for the domain is  

   
   

, ,

, ,

B

l









u v Au Av

f v f Av
 (4.3) 

and the bilinear-linear inner product form for the boundary is 

   
   

, ,

, ,

B

l









u v Bu Bv

g v g Bv
 (4.4) 
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The finite element method is based on partitioning the domain into finite elements and 

approximating the solution in an element by 

1

dofn
e e

h j j
j

c


 u u  (4.5) 

where cj are the coefficients (to be determined by the solution) of the prescribed element 

shape functions ψj.  Substituting (4.5) into (4.3) and (4.4) yields n
dof

 algebraic equations 

e e e e 
     K K u F G  (4.6) 

The LSFEM element stiffness matrices and equivalent force vectors are then 

defined by 

   1 1,..., ,...,e e
dof dof

e

T
e

n n
d   



 K A A A A  (4.7) 

 1,...,  e
dof

e

T
e

n
d 



 F A A f  (4.8) 

   1 1,..., ,...,e e
dof dof

e

T
e

n n
d   



 K B B B B  (4.9) 

 1,...,  e
dof

e

T
e

n
d 



 G B B g  (4.10) 

The element stiffness and load vectors are assembled into a global system of equations, 

which  has the form 

      K K u F G  (4.11) 

Note the difference of the LSFEM form of the stiffness matrix, (4.7), and load vector, 

(4.8), from the classic Galerkin definition 
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      1 1dim dim,..., ,...,e e
dof dof

e

T
e
Galerkin n n

d   


  A AK I I A A  (4.12) 

    1dim dim,..., e
dof

e

T
e
Galerkin n

d 


  A AF I I f  (4.13) 

4.2 p-elements 

The finite element method approximates the solution within an element by 

determining the coefficients of a shape function.  Often, the shape function coefficients 

(degrees of freedom) are represented by element nodal values and the shape functions are 

affine blending functions of spatial coordinates.  In the p-element method, championed 

by Szabo [124], the shape functions are based on higher-order polynomial 

approximations of the solution in an element.  Thus, we approximate the solution u by 

 1 1 1e
nodes a adof

Te e
h j n n nn

u u a a b b      
u u      (4.14) 

where j are higher-order hierarchal shape functions [116].  For the p-element solutions 

presented below, we employ Szabo’s quadrilateral shape function expansion basis [124], 

a serendipity expansion built of kernel functions constructed from Legendre polynomials.  

The element degrees of freedom, en n n n
dof nodes a b

   , consist of the element nodal 

values, 1 nodesnu u , the edge coefficients, 1 ana a , and the interior (bubble) mode 

coefficients, 1 anb b . 

Another p-element is the tensor product expansion used by Karniadakis [70].  A 

comparison of the serendipity and tensor product expansions is made in Section 4.2.2.  

First, however, the convergence and error rate theorem is presented which motivates the 
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use of higher-order polynomials for finite element approximations (Section 4.2.1).  

Implications of coercivity of the LSFEM formulations (Section 4.2.3) and the need for p-

elements for LSFEM is also discussed (Section 4.2.4).  Finally, the merits of higher-order 

p-elements for CSE are listed (Section 4.2.5). 

4.2.1 Convergence and Error Rates 

The convergence order of a finite element space is a measure of the rate of 

reduction in approximation error and is usually expressed as a function of the total 

number degrees of freedom, N, and the element mesh size, h.  For higher-order finite 

element spaces in which polynomial order, p, refinement is also possible, it is common to 

examine p-refinement convergence rates as well. 

The interpolant operator, h , interpolates the solution, u, on a mesh characterized 

by h.  The interpolation error is then  

h hE u u    (4.15) 

This is distinct from the FEM solution error 

h he u u   (4.16) 

Convergence and stability proofs are usually written with regard to the solution error.  In 

most practical applications, the exact solution is not known and the system residual is 

used instead. 

The following theorem on convergence rate is due to Szabo [124] (see also Bathe 

[14]).  If pQ  is the space of piecewise continuous polynomial functions (order p  in 
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each coordinate direction) defined on quadrilateral triangulations of a closed domain,  , 

then given a  1pu H    there exists a finite element solution,  h pu Q , such that  

1

1

p r
h r k

u u Ch u 


   (4.17) 

where 0,1r   and C is a constant that does not depend on the mesh.  An implicit 

assumption in (4.17) is that the mesh is optimally graded, that is, that the error is 

uniformly distributed across the mesh. 

Jiang [69] proves an equivalent form of (4.17) for LSFEM in terms of the semi-

norm, 
22 p

pp x
u u dx


  .  Given a sufficiently smooth u, then 

2 1

p
h L k

u u Ch u


   (4.18) 

For strictly elliptic systems, the convergence rate is improved: 

2

1

1

p
h L p

u u Ch u


   (4.19) 

Equations (4.17) thru (4.19) show that convergence rates are improved faster with p-

refinement than with h-refinement.  This is the basis of the spectral method in FEM.  The 

general rule of thumb is that the mesh should first be refined (in h) to capture sharp 

gradients (this deals with the optimally graded mesh assumption) and then refined in p to 

achieve the best improvement in convergence rate. 

It should not be surprising that convergence rates for LSFEM solutions are 

substantially improved by using p-elements.  What is somewhat surprising is that several 

examples of LSFEM applications show poor accuracy at p = 1 and 2 (which are or 

analogous order to the classic Galerkin bilinear QUAD 4 and biquadratic QUAD 8 or 

QUAD 9 elements [35]).  Indeed, a conjecture based on preliminary observations that we 
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have been unable to prove, may  indicate that a minimum of a fifth-order polynomial 

should be used for the first-order least-squares elasticity applications.  The relevant 

observations are noted in Section 4.2.4. 

It is appropriate to note at this point a conclusion made by Jiang (see [69] Section 

6.6) that in conventional LSFEM method, the rate of convergence for dual variables 

(fluxes) is lower than optimal, since the reduction of second-order elliptic problems to the 

first-order grad-div system destroys full H1 ellipticity.  This conclusion is made on the 

basis of theoretical and numerical studies.  In his work, Jiang did not consider higher-

order p-elements.  It is unclear if the conclusion regarding sub-optimal convergence due 

to destroyed ellipticity holds when the higher-order p-values are used for first-order 

LSFEM formulations.  In the range of fluid and elasticity examples solved in the present 

work using higher-order p-element LSFEM, no instances of decreased convergence for 

dual variables was observed. 

4.2.2 Serendipity and tensor expansion basis comparison 

Szabo’s serendipity p-element expansion basis [124] is an incomplete polynomial 

basis.  However, comparisons with a complete polynomial basis set (i.e. the tensor 

product expansion of [70]) in [101] indicate that the reduction in convergence character is 

slight.  That is, that the serendipity expansion still provides the expected convergence rate 

(for an optimal interpolation based on a complete polynomial) despite being an 

incomplete polynomial.  The only difference between the expansions is the inclusion of 

more interior modes for the tensor product which completes the polynomial basis, Figure 

4.1.  The serendipity expansion was implemented for the LSFEM solutions presented in 
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this dissertation, since it effectively achieves higher polynomial order convergence but at 

a reduced number of required degrees of freedom, Figure 4.2 

 

Tensor

Serendipity

 

Figure 4.1:  Pascal’s triangle for serendipity and tensor product expansions (from [70]) 
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Figure 4.2: Degree of freedom comparison for Serendipity and Tensor product expansion 
basis. 

 

4.2.3 Coercivity Implications 

If a LSFEM formulation is coercive, then the assumptions underlying the 

convergence and error rate theorems are satisfied and the conclusions are mathematically 

applicable to the LSFEM solution.  A coercive bilinear form is equivalent to an inner 

product in the underlying function space [22].  The implication of a coercive formulation 

is that the existence and uniqueness of (variational, weak) solutions can be established 

using Lax-Milgram variation of the Riesz representation theorem from functional 

analysis ([88], p. 345): 

Let H be a Hilbert space  and let l be a bounded linear functional on H.  Then there is one 
and only one vector y  H such that 
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   ,     for all l x x y x H   (4.20) 

The vector y is called the representation of l.  (Note that y and l are different objects, l is 
a linear functional on H and y is a point in H.) 

The Lax-Milgram theorem ([88], p. 346) is 

Let  ,B u v  be a sesquilinear functional on a Hilbert space H and assume that there are 

positive constants a and b such that 

 
 2

,

,

B u v a u v

b u B u u




 (4.21) 

for all u, v in H.  Let l be any bounded linear functional on H.  Then there exist unique 
points uo and vo in H such that 

     , ,o ol x B x v B u y    for all x in H (4.22) 

where the over-bar is used to denote the complex conjugate.  A sesquilinear form is 

linear in one argument and anti-linear or conjugate linear in the other argument.  A 

function is conjugate linear if      f ax by af x bf x   . 

A first-order formulation is fully H1-coercive if it is well-posed in 2 1L H  where 

the data comes from L2 and the solution comes from H1 [22].  Bochev & Gunzburger 

offer fully-coercive first-order least squares formulations for plane elasticity problems, 

but they are velocity-pressure-vorticity formulations and not the mixed displacement-

stress formulations presented below in Section 4.6.1.  The primary implication of using a 

non-coercive least-squares formulation is that the assumptions for the theorems on 

convergence are not met.  All problems worked with the non-coercive forms derived 

below have converged to the analytic solution (when available) and have done so at rates 

which are approximately equivalent to that predicted by the theorems. 
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4.2.4 Need for p-elements in LSFEM 

Although LSFEMs are theoretically not constrained by the stability problems 

associated with mixed-elements, our experience is that LSFEM mixed stress-

displacement elements for elasticity can still be beset by problems of slow convergence at 

low p-values.  Much of this probably stems from the destroyed ellipticity and non-

coercivity of the implemented forms.  However, some interesting observations for 2D 

plane elasticity problems hints at a possible correspondence between a minimum element 

p-order for decent convergence properties and the polynomial order of the lowest order 

Arnold-Awanou mixed stress-displacement element. 

As described in Section 2.4.2.1, the Arnold-Awanou mixed stress-displacement 

element [5] is the first stable, quadrilateral mixed finite element for elasticity.  The lowest 

order Arnold-Awanou element is built on a displacement field of second-order 

polynomials and a stress tensor which is a subspace of 22 symmetric tensors consisting 

of fifth-order polynomials. 

A p-convergence analysis of three example elasticity problems solved using the 

stress-displacement LSFEM formulation developed in Section 4.6.1 demonstrates a 

distinct improvement in convergence rate when fifth-order (serendipity) p-elements are 

used.  Consider, for example, the distinct knee in the curve in Figure 4.3 for the 

Timoshenko and Goodier example problem presented in Section 5.1.  Below p = 5, the 

slope of the curve is approximately 1.  At p > 5, the slope is approximately 9, almost 

an order of magnitude steeper.  Although not as distinct for the other two elasticity 

problems plotted in Figure 4.3 (the plate with a hole from Section 5.2 and the elastic CSE 
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version of the Timoshenko and Goodier example), the p = 5 threshold still represents an 

approximate border between the shallow convergence character of low p-values and the 

significantly steeper convergence rates of higher p-values.  For comparison, a non-

elasticity posed problem (Reddy example 13.2.4 [105]) based on a Dirichlet version of 

the Poisson equation is also plotted.  The relatively straight character of the convergence 

rate implies that the “knee-in-the-curve” is not a particular artifact of Szabo’s serendipity 

p-element expansion basis. 

The pertinent observation is that fifth-order corresponds to the minimum 

polynomial order for the stress tensor that Arnold  proves is required to ensure a stable 

mixed rectangular element [5].  This suggests that mixed stress-displacement finite 

elements may require a minimum of a fifth-order polynomial expansion to guarantee 

good convergence properties.  Further investigation is necessary to determine if the 

observations of convergence rates and the conjectured minimum polynomial order are 

generalizable beyond the example problems considered thus far. 
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Figure 4.3:  LSFEM system residual p-convergence as a function of total system degrees 
of freedom (N) 

 

4.2.5 Advantages of p-elements for CSE 

In the examples considered in Chapter 5-7, we note that a higher-order p-value is 

required to achieve an equivalent order residual for the CSE system compared to the 

original system.  Sensitivity gradients in the vicinity of a boundary controlled by a shape 

parameter are typically steeper than gradients of the original system.  This result matches 

the conclusions made by previous researchers that a more refined mesh may be required 

for the CSE system [120].  Even with the automatic adaptive meshing procedures 

available and employed by some researchers, it is far more convenient to use the same 

computational mesh for both the original system and the sensitivity system.  This is a 

-1 

-9 

p=1 p=5

p=16
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distinct advantage of higher-order FEM since p-refinement allows a straightforward 

means to achieve a refined solution without needing to create a spatially-refined mesh. 

4.3 Alternate norms in LSFEM 

An advantage of LSFEM is a flexibility in the choice of norms used to express the 

variational statement of a problem, (4.1).  Typically, the L2 norm is used, but other norms 

may be convenient or more useful for some applications.  Consider, as an example, 

evaluating the functional expressed in terms of the H1 norm in lieu of the L2 norm as a 

means of penalizing non-smooth gradients of a solution.  Section 4.3.3 provides an 

example of an application where the H1 norm is used to smooth a spurious boundary 

solution resulting in an improved sensitivity solution. 

For a single variable in two dimensions, the H1 norm is 

1

1 2
222

, ,x yH
u u u u d



         
  (4.23) 

We restate the equivalent L2 norm for comparison with (4.23) 

2

1 2

2

L
u u d



 
  
 
  (4.24) 

The bilinear/linear form (4.3) evaluated in the H1 norm under the same finite element 

approximation (4.14) yields the element stiffness matrix and load vector 

   
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x x y yn n x n y
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

      F A A f A A f A A f      (4.26) 
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which should be compared to (4.7)-(4.8) based on the L2 norm.  Note that the practical 

evaluation of (4.25)-(4.26) becomes more complex due to the presence of the shape 

function derivatives in the definition of the element matrices.  Since the first-order form 

differential operator A may contain non-zero first derivatives in each of the coordinate 

dimensions, second derivatives of each of the shape functions is required.  Furthermore, 

when numerical quadrature is used to evaluate (4.25)-(4.26), the higher-order derivatives 

of the mapping (Jacobian) to the natural coordinate system for the standard element must 

be included.  Thus, since 

, 0 , 1 , 2 ,

, 0 , 1 , 2 ,

x x xx xy

y y yx yy

A A A

A A A

   

   

  

  

A

A
 (4.27) 

and 
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   
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  
 (4.28) 

where the Jacobian, J, is defined as 

x x

J
y y
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 (4.29) 

Thus, the higher-order derivatives in (4.27) given by the evaluation of the shape functions 

in their natural coordinates are 
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  (4.30) 

or 
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 (4.31) 

 

4.3.1 Bar Example using H1 Norm 

Consider the LSFEM solution to a vertical bar of length L (with a cross-section of 

A and modulus E) supporting a distributed load   4f x rx and a top load of P, Figure 

4.4.  The analytic solution for displacement and stress and their gradients for the given 

load is 

 
6 6
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u x
EA EA EA EA

     (4.32) 
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Figure 4.4: Vertically loaded bar 
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The LSFEM solution for a two-element unit bar  1r A E    solved using both 

the L2 and H1 norms is given in Figure 4.5.  The analytic solution is also plotted as a 

dashed line.  A p = 2 element was used to avoid exact matching of the analytic solution.  

The H1 norm solution has about a 2% higher least squares (L2) residual than the L2 norm 

solution.  This is expected.  However, the solution for stress is approximately 2% better 

for the H1 norm compared to the L2 norm (and the solution for displacement is 

approximately 2% worse).  The stress degree of freedom is a gradient of the displacement 

and the higher penalty on gradients in the H1 norm shifts some of the error from 

displacement to stress.  Note the discontinuities between the elements in the derivatives 

of both displacement and stress since C0 elements are employed for both the L2 and H1 

norms.  In other words, although the H1 norm penalizes gradients within an element (at 

the cost of a higher overall residual), it does nothing to penalize discontinues in gradients 

between elements that exist in the absence of C1 elements.  Nevertheless, there are some 

potential applications in which the H1 norm may be desired.  One example is given in 

Section 4.3.3. 
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Figure 4.5:  Comparison of LSFEM L2 (left) and H1 (right) norm solutions (p = 2) for a 
2-element vertically loaded bar 

4.3.2 Two-dimension implementation of the H1 norm. 

The L2 and H1 norm LSFEM solutions are now compared for a two-dimensional 

Poisson equation problem with Dirichlet-type boundary conditions.  The problem is 

Example 14.2.3 from Reddy [105].  The LSFEM solutions for L2 and H1 norms for a 4-

element mesh (p = 8) are given in Figure 4.6 and Figure 4.7 respectively.  The first order 

formulation for this problems contains three derivatives, , , ,, ,x y xyu u u , of the primary 

variable, u, and the total L2 residual for the H1 solution is almost double that of the L2 

analytic soln 
LSFEM soln 

analytic soln 
LSFEM soln 
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solution.  The absolute error for the ,xyu  term is improved by approximately 10% in the 

H1 solution.  It is permissible to weight each of the terms in the norm of the H1 

variational statement separately depending on their relative importance and desired 

penalty for a given problem. 

 

Figure 4.6:  L2 norm solution to Reddy Ex. 13.2.4 
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Figure 4.7:  H1 norm solution to Reddy Ex. 13.2.4 

4.3.3 Plate with a hole H1 example 

As mentioned above, each term in the H1 norm may be weighted separately.  It is 

also permissible to only use the H1 norm in elements where an improved solution for the 

gradients is desired, e.g. in boundary elements where the gradient of the solution will be 

used to generate the boundary data for the CSE problem.  In an example problem 

considered later (Section 5.2), the CSE boundary data for a system in polar coordinates 

are generated by taking derivatives of a system posed in Cartesian degrees of freedom.  A 

p = 8 LSFEM solution yields a fairly good estimate of the sensitivity boundary 

conditions.  However, for the shape function expansion basis employed, p-values > 8 start 
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to produce the spurious results in Figure 4.8.  This stems from the discontinuity in the 

shape function derivatives between the elements along the hole.  The unstressed 

boundary condition for the hole in the original LSFEM problem is enforced weakly, and 

at larger p-values, the additional edge coefficients in the boundary integral have the 

equivalent effect in over-determining the solution along the hole.  Although this does not 

affect the LSFEM solution, the discontinuity of derivatives of the LSFEM solution 

increases.  Since these derivatives are used to formulate the LS-CSE boundary 

conditions, this results in the spurious nature of the boundary conditions for higher p-

values in Figure 4.8.  Evaluating the least-squares functional along the hole in terms of 

the H1 norm in lieu of the L2 norm penalizes non-smooth gradients and improves the 

approximation of the gradient of the LSFEM solution and hence the CSE boundary 

conditions.  The H1 norm cannot completely remove the spurious behavior without 

reducing the accuracy of the original LSFEM solution, but this option may work better 

for other applications.  The flexibility in norm choice is an advantage of the LSFEM as 

implemented. 
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Figure 4.8:  Comparison of L2 and H1 norm boundary data for the plate with a circular 
hole CSE problem. 

4.4 Improving Condition Number for LSFEM with Weak Boundary Enforcement 

Weak enforcement of boundary conditions, that is satisfaction of boundary 

conditions in an integral sense, e.g. (4.1), arises naturally in many weighted residual 

methods for boundary value problems.  Boundary conditions that are specified in terms of 

functions of primary variables can often only be enforced in a weak sense if expensive 

iterative solutions are to be avoided.  For example, the boundary conditions for the 

airflow about an airfoil are specified in terms of the surface normal and tangential 

velocity components, not in the domain coordinate velocity components.  Similar 
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problems arise with stress boundary conditions for elasticity problems.  Although weak 

boundary residuals are simple to state, they can sometimes lead to numerical difficulties 

in LSFEM due to ill-conditioned matrices.  (Determination of proper boundary integral 

weighting relative to that domain can also be problematic in LSFEM, but this is not 

necessarily a physical problem.)  This section summarizes an original method for 

improving matrix condition number of weakly-enforced least-squares finite element 

solutions based on condensation of the weak boundary variables [134].  In addition to 

improving the numerical stability of the problem, the approach also improves the 

numerical efficiency of the solution as it reduces the number of variables that must be 

solved.  Results for several examples from elasticity and fluid problems are presented and 

compared. 

For a weighted residual approach in which w denotes a test function, compare the 

weak enforcement of boundary conditions 

    0w Au f d w Bu g d
 

        (4.36) 

with a strong enforcement form in which the boundary conditions are solved first by 

  0w Bu g d


    (4.37) 

which leads to a FEM solution for the boundary degrees of freedom 

1u K G
   (4.38) 

Partitioning all the system degrees of freedom into domain degrees of freedom and 

boundary degrees of freedom yields 

K K u F

K K u F
   

   

     
    

     
 (4.39) 
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where u  is really the set of degrees of freedom belonging to    .  The solution to the 

non-boundary unknowns u  in terms of the partitioned stiffness matrix and load vector is 

then 

 1u K F K u
       (4.40) 

where u  is given by (4.38).  By contrast, the finite element solution of the weakly 

imposed boundary integral in (4.36) leads to a simultaneous solution of both the 

boundary and non-boundary unknowns. 

   1
 

  u K K F G  (4.41) 

The condition number is a measure of amenability to digital computation.  A low 

condition number, on the order of 1, is a “well-conditioned” system and a large condition 

number is “ill-conditioned”.  The conditioning number of a matrix A is 

  1  A A A  (4.42) 

Under the L2 norm, the condition number is 

   
 
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




A
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A
 (4.43) 

where     represents the singular value of A.  Further if A is normal  T TA A AA  

then 

   
 

max

min







A
A

A
 (4.44) 

where   is an eigenvalue of A.  It is the large condition number of the   K K  

matrix that must be “inverted” that presents the potential numerical difficulty for weakly 

enforced boundary conditions.  Let us partition the system into domain unknowns, 
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constrained boundary conditions (strongly enforced), and weakly enforced (integral) 

boundary degrees of freedom as shown in Figure 4.9. 

 

Figure 4.9: Partitioned domain and boundary value problem 

The strategy to improve the condition number of the system is to condense the 

weak degrees of freedom (after solving for constrained boundary values) and solve for 

the domain unknowns as if all boundary degrees of freedom are constrained.  Thus, 

solving the partitioned system in Figure 4.9 for the weak boundary unknowns yields 

 1          wu u ww w wc c w w ww w wc c wu uK u K u K u F u K F K u K u        (4.45) 

which is substituted into 

uu u uw w uc c uK u K u K u F    (4.46) 

which yields the domain unknowns 

11 1 1
u uu uw ww wu u uw ww w uw ww wc uc cu K K K K F K K F K K K K u

                (4.47) 

The weak boundary unknowns are then recovered by 

 1
w ww w wc c wu uu K F K u K u    (4.48) 

Consider as an example, the rank deficient system of equations 

u: unknown 
w: weak 
c: constrained (strong) 
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 (4.49) 

which can be represented in matrix form by 

1

2

3

1 1 0 0

1 2 1 0

0 1 1 0

x

x

x

     
          
         

 (4.50) 

The eigenvalues of the (rank 2) matrix are 3, 1, and 0, and the condition number 

approaches infinity.  This is typical of an unconstrained structural system.  Adding the 

constraint (“boundary value”) 

2 3 2x x   (4.51) 

permits a unique solution 1 2 3 1x x x   .  Solving the constrained system weakly with 

boundary weighting factor α yields the system 

1
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3

1 1 0 0

1 2 1 2

0 1 1 2

x

x

x

  
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     
            
           

 (4.52) 

For equal boundary and domain integral weighting  1  , the system matrix (now full 

rank) has eigenvalues of 3.4, 2, 0.58 and a minimum condition number of 5.83 (for 

1  ).  Figure 4.10 shows the dependence of the system condition number on the 

weighting factor.  The condensed form of (4.52) in which the weakly enforced boundary 

conditions for x2 and x3 are condensed yields 

   
11 1

1

3 0 1 3 0 2
1 1 0 0 1 0 1

0 2 0 0 2 2
x

           
               
             

 (4.53) 

and the recovery of x2 and x3 yields 
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 (4.54) 
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Figure 4.10:  Weak and condensed system condition number as a function of boundary 
weighting factor 

Although an improvement in condition number is readily apparent in this simple 

example, the results for more complex problems are mixed.  Furthermore, the condition 

number of the recovery stiffness matrix should also be considered, since it must be 

inverted to solve for the weakly-enforced boundary unknowns.  In the example above, the 

recovery matrix condition number is 1.5.  Table 4.1 compares the order of magnitude of 

the condition number of the direct weak system solution, the condensed weak solution, 

and the recovery matrix for the condensed degrees of freedom for four different example 

problems.  The first two examples are a classic elasticity problem due to Timoshenko and 

Goodier which is further studied in Section 5.1 with different domain representations and 

different boundary conditions.  In each case, the condition number for both the direct 

solution of the weak system and the condensed system was on the order of 109 to 1010.  
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Thus no improvement in conditioning is achieved through condensation.  The third 

example is the axially-loaded plate with a circular hole that is studied in Section 5.2.  In 

this case, an improvement of two to three orders of magnitude was achieved by the 

condensation and recovery approach of the weak boundary conditions.  A similar three 

order of magnitude improvement was realized in a linear potential fluid flow solution 

about a NACA 0012 airfoil (Section 6.2).  Note that these results are based on LSFEM 

solutions.  We also note that increasing the polynomial order of the p-elements in any 

given problem tended to increase the condition number (this is not apparent in Table 4.1 

which only presents result for a single p-value for each problem).  It is unknown if other 

weakly enforced, weighted residual methods would realize similar improvements in 

condition number through condensation and recovery.  This is a potential topic for further 

research. 

Table 4.1:  Comparison of weak and condensed condition number order of magnitude for 
four example problems 

 log [ ]   
Direct 

   K K  

Condensed 

 1
uu uw ww wuK K K K 

Recovery 

 wwK  

T&G 
(16 elements,  p = 8) 

10.1 10.1 3.6 

T&G  (1/4 plate) 
(16 elements, p = 8)  

9 9 2.9 

Plate w/ a hole 
(64 elements, p = 5) 

9.2 6.3 7 

NACA 0012 
(238 elements, p = 4) 

5 2 2 

 

In summary, although weak (integral) boundary conditions are simple to state and 

implement in an LSFEM architecture, they can lead to numerical difficulties due to 

poorly-conditioned system matrices.  Furthermore weak enforcement of boundary 
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conditions is unavoidable in the fluid-structure interaction problems of current interest.  

We noted that the condition number was a function of the boundary residual weighting 

term and that higher-order p-elements result in higher condition numbers.  Nevertheless, 

the condensation of weak boundary degrees of freedom can improve numerical stability 

when several primary variables are combined in a boundary functional.  No change in 

condition number was observed for “single variable” type boundary conditions.  The 

recovery of weak degrees of freedom is relatively straightforward. 

4.5 LSFEM Fluid Models 

This section describes five various steady and unsteady LSFEM fluid models that 

have been implemented and used in subsequent analysis: linear potential flow (4.5.1); 

compressible potential flow (4.5.2); transient, compressible potential flow (4.5.3); Stokes 

flow (0); transient, incompressible Euler (4.5.5); and transient, compressible Euler 

models (4.5.6).  All of the fluid models are based on the mass equation 

0
D

Dt

    u  (4.55) 

and the momentum equation 

: fD

Dt
  

u
f σ  (4.56) 

though they vary in their underlying assumptions.  Table 4.2 summarizes the various 

fluid models, the unknown variables, the underlying assumptions, as well as notes on the 

properties of the model. 
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Table 4.2:  Summary of fluid model equations, variables, assumptions, and notes 

Stokes Euler Potential 
Incompressible Compressible Incompressible Compressible 

2

0

p

  

   

u

u f
  ,

0

t p

  

   

u

u u u f
 ,

0

t

D

Dt
p

    

   

u

u u u f

0

0

  
 

u

u
 

  0

0

  

 

u

u
 

linear 
steady 
viscid 
(creeping flow 
Re << 1) 

nonlinear 
steady/unsteady 
inviscid 
incompressible 
rotational 

nonlinear 
steady/unsteady 
inviscid 
compressible 
rotational 

linear 
steady  
inviscid 
incompressible 
irrotational 

unsteady (FPE) 
inviscid 
compressible 
irrotational 

 , , ,u v p    , , ,u v p    , , ,u v p    ,u v   , ,u v   

Section 4.5.4 Section 4.5.5 Section 4.5.6 Section 4.5.1 
Section 4.5.2 
Section 4.5.3 

 

The motivating design problem (the aeroelastic optimization of a long-endurance 

aerospace platform, Section 1.1) is primarily interested in moderate Mach numbers 

(approximately 0.3 to 0.7 M).  It is assumed that the contribution of viscous effects is 

negligible compared to the aerodynamic loads encountered in a gust, and thus, that the 

more physically accurate Navier-Stokes equations which include viscosity are not worth 

the computational expense and complexity for the current application. 

4.5.1 Linear Potential Flow 

Linear potential (LP) flow can be modeled by assuming an incompressible and 

inviscid fluid.  Under these assumptions, the mass equation becomes the continuity 

equation 

0   in f   u  (4.57) 

where u is the fluid velocity vector.  The momentum equation may be written 

     in fp
t


    


u

u u f  (4.58) 
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where p is pressure, and f is the body force.  Under steady conditions with no body 

forces, the momentum equation reduces to Bernoulli’s equation 

1
0 2+    in fp p   u u  (4.59) 

For irrotational flow, the vorticity,  ω u , is zero.  Thus 

0   in f  u  (4.60) 

In 2D, (4.57) and (4.60) become  

, , 0x yu v   (4.61) 

and 

, , =0y xu v   (4.62) 

which are also the governing equations for a potential flow field governed by Laplace’s 

equation.  For  T
u vu  the matrix operator form is 

0 1 2

0 0 1 0 0 1 0
,   ,   ,   

0 0 0 1 1 0 0
A A A

       
                 

f  (4.63) 

Note that pressure is determined using the fluid velocity solution along with (4.59).  The 

boundary conditions for a surface immersed in potential flow are the no penetration 

boundary condition 

ˆ 0 u n  (4.64) 

where n̂  is the surface unit normal vector.  This is equivalent in 2D to 

cos sin 0n nu v    (4.65) 

where θn is the surface normal vector angle. 

4.5.2 Quasi-Steady Compressible Potential Flow 

Quasi-steady compressible potential flow (QSCP) is derived from the transient 

full potential equation (next section) by assuming negligible effect for the unsteady 
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terms.  Starting from the inviscid form of the momentum equation (4.56) with no body 

forces is  

  1
0p

t 


    

u

u u  (4.66) 

Thompson [126] derives a transient, compressible velocity potential for an inviscid, 

irrotational fluid from (4.66) 

   
2

2 2 2 21
22

0a
t t

     
        

 
 (4.67) 

where a is the speed of sound.  As expected, the fluid velocity vector u is determined by 

the gradient of the velocity potential 

 u  (4.68) 

Expanding (4.67) for 2D and recognizing that the irrotational condition requires that 

, , ,0 0 0y x xyu v        u  (4.69) 

yields 

2 2 2 2
, , , , , , , , , , ,2 2 0tt x xt y yt x xx y yy xx yya a                  (4.70) 

which in the case of the quasi-steady assumption becomes 

   2 2 2 2
, , 0x yu a u v a v     (4.71) 

The matrix operator form for the steady, compressible potential system with  ,
T

u vu  

is then 

0 1 22 2 2 2

0 0 0 1 1 0 0
,   ,   ,   

0 0 0 0 0
A A A

u a v a

       
                  

f  (4.72) 

where the first equation is the curl-free constraint (4.69) and the second is steady portion 

of the compressible potential equation.  System (4.72) is nonlinear due to the presence of 

the u and v terms. 
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As shown in Section 6.2, the pressure distribution on an airfoil obtained from the 

nonlinear (4.72) can also be obtained by solving the incompressible, linear potential flow 

problem and applying the Prandtl-Glauret compressibility correction 

0

21

p
p

C
C

M




 (4.73) 

There are more complicated compressibility corrections, e.g.the Karman-Tsien 

correction 

 
0

1
02 2 21 1 1

2

p
p

p

C
C

C
M M M



  


      

 (4.74) 

and the Laitone correction 

 
0

1 2
22 2

02

1
1

2 1

p
p

p

C
C

M
M M C

M

 


 




 
  
  

 (4.75) 

which produce better correlations with experimental data in transonic regions, but the 

Prandtl-Glauret correction is probably sufficient for the applications of current interest.  

A comparison of compressible potential and linear potential corrected for compressibility 

is given in Chapter 6. 

It is worth noting that under the assumption of incompressibility, a  , and the 

transient, compressible potential equation (4.67) reduces to Laplace’s equation 

2 0   (4.76) 

which can be solved by the formulation in Section 4.5.1.  Thus, a mathematically-

motivated strategy for solving the transient, compressible potential flow problem is to 

solve the steady linear potential problem and apply one of the compressibility corrections 
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(4.73)-(4.75) for the desired Mach number.  For transient FSI problems where a structure 

surface may have a velocity, the surface boundary condition for the flow is 

su v  (4.77) 

where sv  is the surface velocity vector; reference (4.174). 

4.5.3 Transient, Compressible Potential Flow 

Both the linear potential and quasi-steady compressible potential formulations 

only required the velocity components as problem variables.  Due to the presence of the 

temporal derivatives of the velocity potential in (4.70), a transient, compressible 

formulation also requires the potential function as a variable.  Thus, the equations for a 

transient, full potential equation (FPE) with compressibility flow formulation are 

,xu   (4.78) 

, yv   (4.79) 

 
     

   

2 22 21 1
1 , 1 ,2

1 1
1 2 1 1

2 2

1 2 2

2 1 2 2
                                        

n n
n n n n n n nk k
k k k k x k y

n n
n n n n

u v
u v u a u v a v

t tt

u v
u v

t tt t



 

 
 

 
   

      
 

  
  

 (4.80) 

where the velocity time derivatives have been discretized using a first-order, backward 

difference Euler scheme, and the second temporal derivative of  is approximated by 

   2 1 2
, 2n n n n
tt t          (4.81) 

where the superscripts denote the solution at prior time intervals.  Equation (4.80) is 

based on a direct substitution linearization.  It is also possible to apply a Newton 

linearization to (4.70) which yields 
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 

   

     

2

2

1 11 1 1
1 1 1 , 1

2 22 2
1 , 1 , 1 ,1

21 21 1 1
1

2 2 2 2 2 ...

    2

    2 2 2

n n n n n n n n n n
k k k k k k k k x kt tt k

n n n n n n n
k x k y k k yk k k

n n n
k k kt tt

u u u v v v u u u

u a u v v v v a v

u v



 

 
    

  

 
 

                 

                         

        2 2 2

1 1 , 1 ,1 1
2 2n n n n n

k k x k yk k
u u v v   

       

 (4.82) 

A Newton linearization generally converges faster but has a smaller region of 

convergence than the direct substitution linearization.  In the airfoil examples considered 

in Chapter 6, the direct substitution yields better results in the vicinity of the leading edge 

than the Newton linearized form. 

In addition to (4.78)-(4.80) {or (4.82)}, the irrotational assumption must be 

enforced.  This is done with the additional, curl-free constraint equation (4.69).  This 

leads to an over-constrained, three-variable formulation for the full potential equations, 

which in matrix-operator form, is 

 

 
     

0 1

2 2 2
11 1

2

2 21 2 1 12 2
21

0 0
0 0

0 0
0 0 0

,   ,0 0 0
0 0 1

2 2
0 0

0
0 0 0

0
0 0

0, 
0 1 0

1 2 2
20 0

f f

kk k

f f

n n n n

k

A A

u at u v
t t

A

u vv a
t tt








 




 


 

   


                       
 

   
       
   
          

f

 (4.83) 

for the vector      
T

u vu .  Note the presence of the equation-level weighting factor, 

  in (4.83).  This weighting factor  410
  is necessary to produce good LSFEM 

results for this system.  Equation (4.83) is based on the direct linearization.  The 

equivalent expression based on a Newton linearization is 
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 

   

2

0

1 11 1 1
1 1 , 1 1 ,1 1

1 2

2 22 2
1 1

0 0

0 0

0 0 0

2 2 2 2 2 2

0 0 0 0 0

0 0 0 0 0
            0 0 1 0 1 0

0 0 0 0

n n n n n n n n
k k k x k k k yt tt k k

n n
k k

u u u u v v v v

u a v a















 
      

 

 
 
   
 

                   
   
          
   
       

A

A A

f

           2

2 2 2 21 21 1
1 1 1 , 1 ,1 1

0

0

0

2 2 2 2n n n n n n n n
k k k k k x k ytt k k

u v u u v v  
     

 
 
 

  
 

               

(4.84) 

Equations (4.83) and (4.84) are the transient full potential equations.  In practice, the 

unsteady terms in both (4.83) and (4.84) are negligible for the vertical movement of 

immersed objects at even moderate speeds.  For example, for the plunging sphere in 

Figure 4.11 in which the sphere is moving vertically at one-half the free stream velocity, 

the unsteady terms in the direct substitution form of the transient FPE, (4.83), are more 

than two orders of magnitude smaller than the other terms in the differential operator.  

This is not entirely surprising since the usual application of unsteady aerodynamics is to 

problems exhibiting high frequency or instantaneous starting or stopping of flow 

conditions.  The discrete gust models explored in the FSI examples in Chapter 7 are at 

relative gust velocities less than the one-half free-stream plunge velocity in Figure 4.11.  

Thus, the unsteady terms of the transient FPE may be neglected and the fluid problem can 

be solved as a quasi-steady problem using the QSCP formulation from Section 4.5.2.  

Figure 4.12 compares the velocity components and pressure coefficient for the transient 
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FPE and QSCP flow solutions for the plunging sphere.  Since the QSCP formulation does 

not have to calculate the potential function, , the computational expense of the transient 

flow solution can be reduced by one-third by using the QSCP formulation in lieu of the 

FPE formulation.  Additional transient, compressible FSI results are presented in Chapter 

7. 

 

Figure 4.11:  Plunging sphere compressible flow velocity components solution for 0.25 
M ( 30degeffective  , peak shoulder velocity is 0.57 M) 

 

0.5h 0.5h 

0deg 

0.25M 
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Figure 4.12: Comparison of quasi-steady compressible and full potential flow for LSFEM 
solution to plunging cylinder validation problem; velocity components (left) and pressure 
coefficient (right). 

4.5.4 Stokes Equations 

Though the Stokes equations are physically valid only for very low Reynolds 

numbers (high viscosity/low velocity—“creeping flow”), they are sometimes used for 

initializing the flow for more complicated models (which improves initial convergence).  

The Stokes equations are a set of linear equations which permitted straightforward 

solutions for developing and validating FSI and CSE methods without the complexity of 

nonlinear terms which would contribute little further understanding. 

In creeping flow, originally developed by Stokes c. 1851, the fluid inertial forces 

are considered negligible relative to the viscous forces  1Re << .  Thus there are no 

acceleration terms in the momentum equation and it is valid to consider only steady-state 

conditions.  The Stokes equations in basic form are [133] 

2      in 

0                    in 

p    
  

u f

u
 (4.85) 

where μ is viscosity, u is the fluid velocity vector, p is pressure, and f are the body forces.  

To implement (4.85) using LSFEM, it is convenient to introduce vorticity,  ω u , 

and express (4.85) as a div-curl system [69] 

        in 

0                    in 

             in 

0                     in 

p     
   
  

   

ω f

ω

ω u 0

u

 (4.86) 

which is now a first-order system and practical for LSFEM.  In two dimensions vorticity 

is a scalar, , ,y xu v   , and (4.86) in component form is  
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, ,

, ,

, ,

, ,

             in 

             in 

0                   in 

0            in 

x y x

y x y

x y

y x

p f

p f

u v

u v







  

  

  

   

 (4.87) 

which in matrix-operator form with  T
u v p u  is 

0 1 , 2 ,x yA A A  u u u f  (4.88) 

where 

0 1 2

0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0
              

0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 1 0 0 1 0 0 0 0

x

y

f
A A A

f




       
       
          
       
              

f  (4.89) 

The appropriate boundary condition combinations for (4.86) are either 1) p and n ω  or 

2) n ω  (see [69] 8.2.2).  For two dimensions, these two sets of boundary conditions 

reduce to the combinations given in Table 4.3. 

Table 4.3:  Boundary condition combinations for the Stokes equations [69] 

Description Boundary Condition 
Inlet n u   and     
Inlet n u    and  p  

Outlet n u    and  p  

Uniform outflow n u    and    
Wall n u    and  n u  
Outlet (portion of only) p   and    

 

4.5.5 Transient, Incompressible Euler 

Jiang [69] derives a transient, incompressible fluid formulation from the 

momentum and continuity equations.  The 2D first-order equations are from the 

incompressibility relation 
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0  u  (4.90) 

the momentum equation 

 ,t p   u u u f  (4.91) 

the 2D definition of vorticity 

, ,y xu v     (4.92) 

and a vorticity transport term that allows for transient treatment of rotating flow 

, 0t   u  (4.93) 

Jiang’s technique is to discretize first in time using backward Euler finite-difference and 

use direct substitution for nonlinear terms.  Under this, (4.90)-(4.93) become 

1 1
, ,

1 1 1 1 11 1
, , ,

1 1 1 1 11 1
, , ,

1 1 1
, ,

1 1 11 1
, ,

0

0

0

n n
x y

n n n n n n n n
x y x xt t

n n n n n n n n
x y y yt t

n n n
y x

n n n n n n
x yt t

u v

u u u u v u p f

v v u v v v p f

u v

u v



   

 

    
 

    
 

  

  
 

 

    

    

  

   

 (4.94) 

and the first-order (nonlinear) operator form is 

       1 1 1
0 1 , 2 ,
f n n f n n f n n n

x yA A A    u u u u u u f u  (4.95) 

with operator matrices 
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u u

u f u

 (4.96) 

An example of a steady fluid solution using this formulation for the flow about a sphere 

is given in Figure 4.13 and compared with the theoretical solution in Figure 4.14. 

 

Figure 4.13: LSFEM solution of steady, incompressible Euler flow about a sphere (p = 8) 

u

v

p


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Figure 4.14:  Comparison of LSFEM solution with theoretical solution (solid lines) for 
steady, incompressible Euler flow about a sphere 

 

4.5.6 Transient, Compressible Euler 

Neglecting body forces, a compressible Newtonian fluid is governed by the 

continuity and momentum equations, 

0
D

Dt

   V  (4.97) 

: 0f D

Dt
  

V
σ  (4.98) 

where  is density, f is the fluid stress tensor, and  Tu vV  is the velocity vector.  If 

viscous shear forces are neglected then f
ij ijp    where p is pressure and ij is the 

Kronecker delta.  These assumptions with the equation of state for an ideal fluid yield the 

2D compressible Euler equations in first-order form 

u 

v

Cp



u,
 v

, ω
, C

p 



118 

 
 

 

, , , , ,

, , ,

, , ,

, , , , ,

0

0

0

0

t x y x y

t x x

t y y

t x y x y

u v u v

u u v u p

v u v v p

p p u v up vp

    







    

   

   

    

 (4.99) 

where  is the ratio of specific heats.  Equation (4.99) in matrix-operator form is 

, ,, 0 1 2x y

f f f f f f f f f
t tA A A A   u u u u f  (4.100) 

where 
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f

 (4.101) 

 Tf u v pu  is the vector of primitive fluid variables. 

4.6 Structural Elasticity Models 

This section describes two LSFEM structural models that are used in subsequent 

analysis: 2D plane stress elasticity and the 1D Euler-Bernoulli beam.  The three general 

classes of 2D elasticity formulations for LSFEM were discussed in Section 2.4.2.2.  

Though not elliptic, the five-variable plane-stress stress-displacement form is the most 

convenient for our purposes.  The presence of the stress tensor components as degrees of 

freedom allows for direct coupling with the fluid stresses without the need for 

intermediate variables or transformations.  Additionally, stress is often an important 
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analysis and design variable and thus it is useful to have the stress tensor as a primary 

variable in the CSE formulation. 

The 1D Euler-Bernoulli (E-B) beam is introduced for its simplicity and the wide 

variety of analytic solutions that are possible without the complications of dealing with 

second-order tensors [104].  Example problems for both FSI and CSE system are solved 

using the E-B beam as a straightforward test and validation tool in the course of method 

development. 

4.6.1 Plane Stress (u-σ formulation) 

The non-elliptic, mixed stress-displacement formulation requires the minimum 

number of degrees of freedom (five) to formulate a first-order approximation for the 2D 

elasticity equations.  The plane elasticity mixed stress-displacement unknowns are the 

three components of the stress tensor, ij, and the two components of the displacement 

vector, u and v.  The 2D kinematic relations for elasticity relate the strain tensor 

components, ij, to the gradients of the displacement 

 

,

,

1
, ,2

xx x

yy y

xy y x

u

v

u v











 

 (4.102) 

Assuming a plane-stress state and substituting (4.102) into the constitutive relation for 

isotropic Hookean strain  

 
2

1
2

1 0

1 0
1

0 0 1

xx xx

yy yy

xy xy

E
  
  


  

    
                

 (4.103) 

yields three equations relating stress and displacements 
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 (4.104) 

The two components of the equilibrium equations give the final two equations 

, , ,

, , ,

tt xx x xy y x

tt yy y xy x y

u f

v f

  

  

    

    
 (4.105) 

Thus, the 2D plane stress stress-displacement first-order system in matrix-operator form 

is 

, 0 1 , 2 ,
s s s s s s s s s
t tt x yA A A A   u u u u f  (4.106) 

where 
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 (4.107) 

where 
Ts

xx yy xyu v      u .  The s superscripts are introduced to denote 

structure domain variables and distinguish them from fluid domain variables in the 

coupled FSI system. 
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Note that formulation (4.107) has an odd number of variables and thus can no 

longer be elliptic, even though elasticity systems are elliptic in nature.  Additionally, this 

formulation is not coercive in H1.  The selection of this formulation for LSFEM is based 

primarily on the minimum number of degrees of freedom required and the presence of the 

stress tensor allowing direct access to traction boundary conditions and stress sensitivity.  

Less than optimal convergence properties of the LSFEM solution can be expected due to 

the destruction of ellipticity and the lack of coercivity and are somewhat mitigated by 

using higher-order p-type elements. 

4.6.2 Steady, Linear Euler-Bernoulli Beam 

The governing equation for the deflection, v, of an Euler-Bernoulli beam subject 

to a transverse load per unit length, py, is 

2 2

2 2 y

v
EI p

x x

  
   

 (4.108) 

Introducing  

,xv   (4.109) 

, ,z xx xM EIv    (4.110) 

,y z xV M   (4.111) 

where θ is the beam slope, Mz is the internal bending moment, and Vy is the internal shear 

force allows decomposition of (4.108) into first-order form 

0 1 , xA A u u f  (4.112) 

where 
T

z yv M V   u  and the matrix-operators are 
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f  (4.113) 

 

4.6.3 Transient, Nonlinear Euler-Bernoulli Beam 

One of the fluid-structure interaction problems considered later is an airfoil 

mounted at the tip of a flexible sting.  The sting is modeled as a nonlinear Euler-Bernoulli 

beam where the nonlinear von Karman strain relations account for possible large 

deflections of the beam.  The nonlinear formulation is a total Lagrangian description in 

which the forces and strains are referenced to the undeformed configuration.  Nonlinear 

Green strain terms are incorporated to model large transverse deflection of the beam.  

The derivation is based the nonlinear bending of straight beams from [106].  We assume 

large transverse displacements, moderate rotations, and relatively small axial strains in 

accordance with the assumptions of [106].  Additionally, the Euler-Bernoulli beam 

assumption that plane sections remain plane after deformation, equivalent to neglecting 

the Poisson effect and transverse strains, is also allowed for the long, slender sting in this 

problem.  Because the changes in geometry (specifically, the cross-sectional area of the 

beam) are small, the distinction between the Piola-Lagrange stress (which expresses 

forces in the deformed configuration to areas in the reference configuration) and the 

Cauchy stress (which expresses forces of the deformed configuration to areas in the 

deformed configuration) is not necessary [106].  A modification to the derived equations 

which does make the distinction between the Piola-Lagrange and Cauchy stress is 
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presented at the end of this section.  The force and free-body diagram of the beam is 

given in Figure 4.15. 

 

Figure 4.15:  Beam free-body diagram 

 

With the Euler-Bernoulli assumption, the angle of rotation and the internal 

bending moment are given by 

,xv   (4.114) 

,z xM EI  (4.115) 

where v is the vertical (transverse) displacement, and the product of Young’s modulus, E, 

and the moment of inertia, I, is the effective bending stiffness of the beam.  The axial 

force, Nx, at any cross section of the beam is given by 

x xx

A

N dA   (4.116) 

where σxx is the normal stress and A is the cross sectional area of the beam.  Summing the 

moments about the z-axis yields 

, 0z x y xM V N     (4.117) 

The nonlinear von Karman strain-displacement relation [106] is  

   1 1
, , , ,2 2ij i j j i m i m ju u u u     (4.118) 

which, assuming 2
, ,x xu u  and 2 2

, ,x xu v , becomes for the axial dimension 
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2 21 1
, , ,2 2xx x x xu v u      (4.119) 

Spar buckling due to axial compression is a possible failure mode of joined wing 

configurations.  Including an axial tip load, Ptip, then the von Karman strain together with 

the constitutive equation 

xx xxE   (4.120) 

yields the nonlinear relationship between tip load, shear, bending moment, and rotation 

3
, 0

2z x y tip

EA
M V P       (4.121) 

If there are no axial loads (so that the beam is inextensible beam and , 0xu  ), (4.121) 

reduces to 

3
, 0

2z x y

EA
M V     (4.122) 

Note that Vy is the shear force perpendicular to the x-axis.  The shear force, Q, 

perpendicular to the neutral axis of the deformed beam is given by 

3

2y

EA
Q V     (4.123) 

Finally, summing the forces in the y-direction yields the final equation governing the 

beam dynamics 

2

,2y y x y

v
V p

t
 

 


 (4.124) 

where y is the mass per unit length of the sting and py is the transverse load per unit 

length.  Substituting (4.122) and (4.115) into (4.124) yields the nonlinear governing 

equation large deflections, v, of the sting subject only to a transverse load 

32 2 2

2 2 2 2y y

v v EA v
EI p

t x x x x


                      
 (4.125) 
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The nonlinear beam system in first-order matrix operator form is 

, 0 1 ,t t xA A A  u u u f  (4.126) 

where 
T

z yv M V v   u   and the matrix operators (including an axial tip load) 

are 
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f
(4.127) 

The system of continuous sensitivity equations is formed by differentiating (4.114), 

(4.115), (4.121), and (4.124).  Thus the nonlinear beam CSEs in first order form are 

,
L L

xv   (4.128) 

,
L L

z xM EI   (4.129) 

 23
, 2 0L L L L

z x y tipM V P EA       (4.130) 

  ,
L L L

y y x yv V p    (4.131) 

,
L L

tv v  (4.132) 

As noted above, the sensitivity system is linear, even though the original elasticity 

equations were nonlinear.  In first-order, matrix operator form, (4.128)-(4.132) are 
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f
(4.133) 

Note that, as explained above, the At and A1 CSE matrix operators are the same as the 

original, nonlinear elasticity system, but that the A0 matrix for the CSE system is 

different. 
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The nonlinear bending strain term 3

2

EA  is a stiffening term (the nonlinear 

bending strain absorbs some of the energy of the transverse load).  If the axial tip force is 

tensile in nature ( 0tipP  ) then the nonlinear effect is further stiffening.  If the axial tip 

force is compressive ( 0tipP  ) then the axial load has a softening effect typical of beam-

column buckling.  Recall that since this is a total Lagrangian description of the nonlinear 

beam bending, the forces tipP  and yV  are expressed in the original (undeformed) 

coordinate system.  Follower forces at expressed relative to tip of the deformed beam 

must be resolved into the undeformed coordinates.  More detail of modeling the follower 

force is given in the description of the FSI example problem in Section 7.3. 

This nonlinear bending of straight beams was based on the assumptions of large 

transverse displacements, moderate rotations, and relatively small axial strains [106].  

Additionally, we assumed that the post-deformation change in the cross-sectional area of 

the beam was small so that there was no distinction between the Piola-Lagrange stress 

and the Cauchy stress.  The assumption of small changes is in cross-sectional area is 

related to the small axial strain assumption.  In 1D, the Piola-Lagrange stress (or 1st 

Piola-Kirchhoff stress) is also known as the engineering stress.  It is a Lagrangian 

description in which the force in the present configuration is referenced to the area of the 

undeformed configuration.  The 1D Piola-Lagrange (engineering) stress is 

E

T
P

A
   (4.134) 
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where the reference areas and lengths are described in Figure 4.16.  A convention of 

upper-case letters for the undeformed configuration and lower-case letters for the 

deformed configuration is adopted. 

 

Figure 4.16:  1D stress and strain reference area and configuration definitions 

The 1D Cauchy or true stress is 

x

T

a
   (4.135) 

In a similar manner, the 1D engineering strain and true strain for axial deformation are 

defined as 

E

l L

L
 

  (4.136) 

and 
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 
 (4.137) 

respectively.  The 1D Lagrangian description of the strain due rotation is the Green strain 

2 2
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1 1
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When expressed relative to the deformed configuration, this yields the 1D Almansi-

Hamel strain 

2 2

2

1

2A

l L

l


 
  

 
 (4.139) 

Both (4.138) and (4.139) are based on small angle assumptions.  They are not used in the 

current development which assumes moderate rotations and are merely included for 

completeness. 

Force equilibrium is properly expressed in terms of the Cauchy stress.  Note that 

the 1D engineering and Cauchy stresses are related by 

E x

a

A
   (4.140) 

The consistent integration of (4.116) to determine the axial force in the Lagrangian 

reference frame must introduce a factor of 
a

A
.  Assuming a constant volume of material, 

Vol LA la  , yields the relation 

,1 1E x

a l
u

A L
      (4.141) 

The modified, consistent form for (4.121) is then 

    3
, , ,1 1 0

2z x y x tip x

EA
M V u P u        (4.142) 

Note that under the assumption that ,xu  is negligible, (4.142) yields the previously 

derived (4.121).  The nonlinear bending model developed in this section is used in 

Section 7.3.3 for a FSI problem.  The axial load due to the fluid is more than two orders 

of magnitude smaller than the lateral load.  Furthermore, typical values for Young’s 

modulus of aerospace materials are 107 to 109 depending on the units.  Thus, the axial 
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strain will be at least 7 orders of magnitude smaller than the axial stress.  For this 

particular example problem, the modified form (4.142) which makes a distinction 

between the Piola-Lagrange and Cauchy stresses is not required. 

4.6.4 Elastic Mesh Deformation 

In a fluid-structure interaction problem, the fluid system is typically posed in an 

Eulerian frame.  As the structure deforms under the fluid forces, the fluid domain changes 

shape and some method of updating the Eulerian fluid mesh is required for the next time 

interval or iteration.  This section describes two elasticity-based mesh deformation 

methods for the fluid domain that were formulated and implemented in the course of the 

FSI analysis development. 

The first mesh deformation model is the 2D plane-stress formulation described in 

Section 4.6.1.  If ν = 0, the plane-stress model becomes a spring-node system typical of 

many mesh deformation schemes.  Increasing ν(up to ½) introduces shear which serves 

to limit the angular distortion of the mesh. 

The second fluid domain mesh deformation is based on Yang’s first-order least 

squares displacement-displacement gradient formulation for elasticity systems [141] 

0 1 , 2 , 0d d d d d d d d
x yA A A   A u u u u  (4.143) 

where  1 2 1 2 3 4

Td d d    u , the superscript d denotes mesh deformation 

domain, and 

1 1, 3 1,

4 2, 2 2,

x y

x y

d d

d d

 
 

 
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 (4.144) 
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The dual variables, (4.144), are essentially the gradients of displacements.  The elasticity 

homogeneous equilibrium equation (4.105) can then be written as 

   

   

1 2 3 4

3 4 1 2

0      in 

0      in 

d d d d d
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 (4.145) 

where 2d d d     and λd and μd are the pseudo-solid Lamé constants, 

 
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2 1

d
d

d

E

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 (4.146) 
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 (4.147) 

Ed is Young’s modulus, and νd is Poisson’s ratio ( 1
2

d  ) of the pseudo-solid.  The 

matrix-operators are 
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 (4.148) 

The pseudo-solid boundary conditions for displacement are 
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 (4.149) 
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The pseudo-solid boundary conditions for the displacement gradients are 

 1 1 2 2
1 2 3 4

2 2 1 1

0
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    
  

 (4.150) 

A clever technique to minimize mesh distortion is to augment the pseudo-solid elasticity 

model with a curl-free constraint, equivalent to irrotational fluid flow.  This is easily done 

in a weak sense with the addition of another domain residual term that penalizes the 

“vorticity” of the mesh 

2

2

3 4
d d d d

L
J      (4.151) 

where d
  is the mesh distortion weighting factor. 

4.7 Transient LSFEM 

This section describes two methods for implementing transient problems using 

LSFEM.  The first uses a continuous time-space finite element approximation to the 

dynamic equations.  The second discretizes the time domain and employs an implicit 

backward-difference operator for time before applying the finite element approximation 

to the spatial domain. 

4.7.1 Time-space formulation 

The LSFEM code developed in the course of this research is limited to 2D 

applications.  However in the case of 1D domains, transient problems are easily 

implemented using the second dimension for continuous time approximations.  Thus, the 

system least-squares functional is a continuous time-space integral to which the normal 

finite element approximation is applied. 
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Consider, as an example, the axial vibration of a clamped-free bar with no 

distributed load.  The transient equations are 

2

2
0x x

u u
EA f

t x x
          

 (4.152) 

For the states variable  Txu uu  , the first-order form is 
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                           

 (4.153) 

Figure 4.17 depicts the time-space mesh and boundary conditions for a free vibrating 

plucked bar in which the initial displacement of the bar is in the first mode shape of a 

clamped-free bar 

   1 1 1, ; cos sin
x

u x t L A t
L

    
 

 (4.154) 

where the eigenvalues are 

 2 1

2i i

i
L


 


   (4.155) 

and the natural frequencies are 

 2 1

2i
x

i EA

L







  (4.156) 

 

Figure 4.17: Plucked bar time-space mesh and boundary conditions. 

The axial stress and velocity are then 
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   mode 1 ,0 ,  ,0 ,  0x xu u x x u   
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x t L EA t
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 (4.157) 
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  (4.158) 

The time-pace solution for the first quarter period of the plucked bar are plotted in Figure 

4.18.  The LSFEM solution matches the analytic solution. 

 

Figure 4.18:  Displacement, stress, and velocity during the first quarter period of a 
clamped-free bar plucked in the first mode shape (initial position blue to quarter period 
red) 

4.7.2 Continuous Space, Backward-Difference Time Formulation 

The second transient formulation implemented in the LSFEM research code 

discretizes the time domain and employs an implicit backward-difference operator for 
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time.  The usual finite element approximation is then used for the spatial domain.  The 

backward-difference operator is easily derived from a Taylor series representation of 

time.  Higher-order series representations (equivalently more steps backward in time) 

results in improved accuracy due to the reduced truncation error and permits a larger time 

step.   

Table 4.4: Multipoint backward-difference representations 

# of 
prior 

points 
formula1,2 truncation 

error order

2    2 1 2
, 2n n n n
ttu t u u u

        O t  

3    2 1 2 3
, 2 5 4n n n n n
ttu t u u u u

          2
O t  

 

5    2 1 2 3 4 5
,

1
45 154 214 156 61 10

12
n n n n n n n
ttu t u u u u u u

              4
O t  

 

7 

  


2 1 2 3 4
,

5 6 7

1
938 4014 7911 9490 7380 ...

180

                          3618 1019 126

n n n n n n
tt

n n n

u t u u u u u

u u u

    

  

      

  
 

 6
O t  

 

1:  t  is assumed to be uniform 
2:  The nth superscript refers to the nth time step 
 

Consider, as an example, the vibration of a clamped-free Euler-Bernoulli beam 

with no distributed load.  The transient equations are 

2 2 2
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 (4.159) 

Discretizing in time and substituting a backward-difference approximation for the 

deflection acceleration yields 

2 2

2 2 y x t t
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x x

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 (4.160) 
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where t  is the standard first backward (or rearward)-difference operator.  Using any of 

the multipoint backward-difference approximations for deflection from Table 4.4 and 

moving the current state vn back to the left hand side yields the implicit, backward-

difference time, continuous space formulation for an Euler-Bernoulli beam 

   
 

2 2
1

2 22 2
,..., pts

n n
n nn nx x
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c v
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 (4.161) 

where cn is the coefficient associated with the first term of the backward-difference 

approximation and  1,..., ptsn nnf v v   is the backward-difference function from Table 4.4 

after the leading vn term has been removed. 

The analytic solution for a beam plucked in the first mode shape is 
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 (4.162) 

where the first eigenvalue is 1 1.87510  , 1 0.734096  , and the natural frequency is 

 2

1 4
x

EI

L
 


 .  The amplitude coefficient, A1, is the maximum lateral deflection of the 

beam.  The time-space solution for the first quarter period of the plucked bar are plotted 

in Figure 4.19.  The LSFEM solution matches the analytic solution. 
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Figure 4.19:  First quarter period of a beam plucked in the first mode shape 
( 0.02,  4, 5 pts backward differencet p   ) (initial position blue to quarter period red) 

The stability of time-space finite difference equations is governed by the well-

known Courant–Friedrichs–Levy condition[21].  In a discrete finite difference context, 

the definition of stability is that errors (truncation or round-off) do not grow while 

marching to the next step [2].  Four parameters affect the numerical stability of the 

scheme outlined above: time step size, t ; finite element polynomial order, p; number of 

backward difference points; finite element mesh size, h.  To explore the numerical 

stability of this scheme, we consider a simpler problem and employ the Fourier error 
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propagation method detailed in [125].  To make the problem tractable, consider the 

analogous (but lower order) 1D wave equation 

, , 0t xu cu   (4.163) 

where c is the wave speed.  The continuous space, 1-point backward-difference time 

formulation of (4.163) is 

11 1n n nu c u u
t x t


 

  
 (4.164) 

The numerical error, , in solving (4.164) is also governed by the same relation so that 

11 1n n nc
t x t
   

 
  

 (4.165) 

We assume that the error at any point in time (t=0 is convenient) can be expressed as a 

Fourier series so that 

( , ) mik xatx t e e   (4.166) 

where km is the wave number of the spatial error.  Substituting (4.166) into (4.165) and 

dividing by exp(ikmx) yields 

   a t t a t t at
me c tik e e     (4.167) 

so that 
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1
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e
c tik

 
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 (4.168) 

Noting that 1n a t ne    motivates the definition of the amplification factor 

 2

1 1

1 1

a t

m
m

G e
c tik c tk

  
   

 (4.169) 

Since 1G  , the error will not grow in time and this scheme is always stable for the 1D 

wave equation.  For a finite difference scheme, the spatial wave number is governed by 
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the spatial mesh step size, x .  Indeed, the CFL requirement that 1
c t

x





 can be inferred 

from a similar derivation of the amplification factor.  For a finite element approximation 

of the spatial domain, increasing p should increase the frequency (and hence the 

wavenumber) of the lowest order error in the solution.  Some of the conclusions on the 

stability of the backward difference numerical scheme are counterintuitive compared to 

conventional finite difference methods.  For example, holding all else equal but 

decreasing the time step in (4.169) will increase the amplification factor closer to 1.  

Thus, decreasing the time step (which in most finite difference schemes improves 

stability and accuracy) can decrease stability margin for the discrete time, continuous 

space formulation. 

Now consider the classic wave equation 

, , 0tt xxu cu   (4.170) 

which is a closer analogue to the transient Euler-Bernoulli beam (4.159).  The Fourier 

stability analysis for (4.170) leads to  

  22 1 2 1a t a t
me c k t e      (4.171) 

which is a quadratic equation with solutions given by 
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a t m

m

ck t
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c k t
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

 
 (4.172) 

Assuming the quantity 0mck t   leads to the worst case root.  The requirement 1G   

gives the stability restrictions in terms of the time step and wave number for the 

continuous space, backward-difference time numerical scheme as applied to the classic 

wave equation: 
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1

2
mk t

c
   (4.173) 

This implies a minimum limit on time step for numerical stability.  (The other root leads 

to 1mck t    which is always satisfied).  Contrast (4.173) with the CFL condition 

which represents a maximum limit to the step size.  Further, as p value increases (or h 

decreases), the fundamental frequency for the error should increase and the wave number, 

km, increases.  Thus, a more accurate finite element solution (due to increased p or finer 

mesh) will permit a smaller step size.  Although these conclusions are only applicable to 

the wave equation, they match the observations of the analogous transient EB system.  

Several trends and tentative conclusions, summarized in Table 4.5, are inferred from the 

behavior of this model problem.  These tentative conclusions are supported by the 

comparisons presented in the Figure 4.20-Figure 4.22 at the end this chapter.  Figure 4.20 

demonstrates that increasing the number of backward-difference points can decrease 

stability.  Similarly, Figure 4.21 demonstrates that decreasing t  also decreases stability 

whereas Figure 4.22 demonstrates that increasing p can restore stability.  Further analysis 

of the stability limits for the discrete time, continuous space representation of the 

equations derived above is complicated by the large number of terms in the 

representations of Table 4.4 and is beyond the scope of the present effort.  No references 

to this type of analysis relevant to the present attempt can be found in the literature.  The 

numerical parameter stability requirements for the FSI example problem considered in 

Chapter 7 which uses this approach are established by using values that are known to be 

stable from the free vibration verification problems.  Further study of the stability limits 

for this mixed numerical scheme may be a promising avenue for further research. 
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Table 4.5:  Backward difference discrete time stability and accuracy considerations 

 Stability Accuracy Explanation 

Inc t  improves stability decreases accuracy 
prevents stability problems due to round-
off error in comparison of solutions in 
close proximity in time 

Inc p  improves stability increases accuracy 
improved spatial accuracy eliminates 
solution error at points in time 

Inc num 
BD pts 

decreases stability increases accuracy 
round-off error between adjacent time 
points dominates 

Inc h improves stability increases accuracy improves spatial accuracy 
 

4.8 Fluid-Structure Interface Relations 

In a fluid structure interaction problem, the boundary condition (3.2) on the fluid-

structure boundary, sf, becomes an interface condition. The interface conditions on sf 

are based on kinematic and equilibrium conditions along the interface between the 

structure and fluid domains.  If the outward normal vectors for the structure and fluid 

domains are ns and nf, then on s f sf  n n .  Thus for an inviscid fluid, the no-

penetration condition (slip wall) is 

0    on s s f f sf    v n v n  (4.174) 

where vs and vf are the structure and fluid velocities respectively.  For viscous flow, the 

no slip condition is 

0    on s f sf  v v  (4.175) 

For steady-state problems, the structure velocity is zero.  Equilibrium conditions on the 

fluid-structure interface result in 

0   on  s s f f sf    σ n σ n  (4.176) 

which equates the structure boundary stress vector, s sσ n , to the traction forces due to 

the fluid stress at the interface, written in tensor index notation as 
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 , , ,
f f f f f f f

ij ij i j j i ij i ip u u u          (4.177) 

where μf is the fluid viscosity and λf is the fluid bulk viscosity. 

The interface coupling is incorporated into the LSFEM model by a boundary 

integral, (4.1), evaluated along sf.  Thus the weighted residual is 

s s f fs s f f sf sf
totJ J J J J J             (4.178) 

where 
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  s s s s s

L
J   A u -f  (4.179) 

  2

2
  f f f f f

L
J   A u - f  (4.180) 

  2 2

2 2sf sf s s f f s s f f

L L
J         σ n σ n v n v n  (4.181) 

  2

2s s s s s

L
J    B u - g  (4.182) 

  2

2f f f f f

L
J    B u - g  (4.183) 

As discussed in Section 2.2, there are several options for coupling the mesh 

deformation problem with the fluid-structure interface problem.  In the monolithic FSI 

approach (it is uncertain whether the expression is due to Hubner or Michler as both 

papers appear at the same time), the structure, fluid, and mesh deformation are fully-

coupled and posed as a single, implicit system [64, 84].  Some researchers have 

employed different finite element formulations for each domain.  For example [76] used 

LSFEM for the fluid solution and a weak-Galerkin FEM for the structure solution.  In 

[101], a unified, higher-order p LSFEM formulation for the structure, fluid, and mesh 

deformation domains was adopted.  In this scheme, the fully-coupled structure-fluid-

mesh system takes the form 
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 (4.184) 

where s denotes the structure domain, f the fluid domain, and d denotes the deformation 

domain.  The diagonal components of the stiffness matrix in (4.184) are constructed on 

an element basis and assembled into the global system by separate evaluation in each 

domain.  The coupling terms (off-diagonal components) of (4.184) are determined from 

evaluating the boundary integral along the interface and assembling the boundary 

element degrees of freedom into the global system based on a global degree of freedom 

index table. 

A serious drawback to using the monolithic formulation with LSFEM was noted 

by Rasmussen [101].  For a variety of example problems, the LSFEM solution was 

shown to be extremely sensitive to the boundary and domain weights of the total system 

residual which takes the form 

s s f f d d sfd sfd
totJ J J J J        (4.185) 

The most promising weighting scheme developed in [101] was an iterative residual 

balancing method that increased the required computations by at least one order of 

magnitude.  This represents a significant computational burden.  Since the mesh 

sensitivity is not required for the local CSE formulation developed for FSI problems in 

Chapter 7, we avoid the computational expense of using a monolithic LSFEM 

formulation.  The mesh problem is decoupled from the fluid-structure problem and the 
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fluid domain is remeshed between each time step.  No accuracy problems have been 

noted for this approach for the problems with an analytic solution. 

4.9 Summary of the Least-Square Finite Element Method 

This chapter described the theory of LSFEM as a variational method and 

presented a method for implementing higher-order polynomial elements, p-elements, in 

LSFEM.  The specific LSFEM formulations for six fluid models, four elasticity models, 

and transient LSFEM formulations were also presented.  Not all of the LSFEM models 

developed in this Chapter are employed in subsequent chapters, but they were included 

for the sake of completeness and for the potential benefit to future researchers. 
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Figure 4.20:  Comparison demonstrating effect of number of BD points on numerical stability of quarter period plucked beam solution 
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Figure 4.21:  Comparison showing rapid deterioration of numerical stability due to too small t  of quarter period plucked beam solution 
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Figure 4.22:  Comparison showing improvement of numerical stability due to increased p on quarter period plucked beam solution 
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5 LS-CSE For Elasticity 

Continuous sensitivity solutions for the shape variation to several 2D elasticity 

examples problems are presented.  The example problems were solved using an original 

LSFEM solver with higher-order p-elements that was implemented in MATLAB®.  The 

problems considered here employ both Cartesian and polar coordinate systems and have 

analytic solutions which permit a closed-form solution for the shape parameter 

sensitivity.  The CSE solutions are also compared to finite difference results. 

The first problem (Section 5.1) is a plane elasticity example adapted from 

Timoshenko and Goodier (T&G).  The second problem (Section 5.2) explores several 

variations of an axially-loaded plate with a hole.  The purpose of these example problems 

is to demonstrate the LS-CSE method in sufficient detail for others to follow and use as 

validation cases.  As noted in Chapter 2, the literature contains precious few examples of 

continuous sensitivity applications for elasticity. 

5.1 Timoshenko and Goodier Example 

This is a classic elasticity problem, example 3.24 from [127], in which a simply 

supported rectangular beam is subject to a surface traction on the upper and lower edges, 

Figure 5.1.  For the current example, the beam length, L, and semi-width, c, are 1 and ½ 

respectively so that the domain is a unit square.  The solution for a loading of A = B = ½, 

and L   (so that the edge traction is a half-sine curve) is plotted in Figure 5.1.  The 

analytic solution for the stress and displacement fields is 

   
   

2 2
1 2

2 2
3 4

, sin [ cosh sinh ...

                                cosh 2 sinh sinh 2 cosh ]

xx x y x C y C y

C y y y C y y y

     

       

  

  
 (5.1) 
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   2
1 2 3 4, sin [ cosh sinh cosh sinh ]yy x y x C y C y C y y C y y            (5.2) 

   
1 2

3 4

cos [ sinh cosh ...

                          cosh sinh sinh cosh ]

xy x C y C y

C y y y C y y y

      

     

   

  
 (5.3) 

   

   
  

2 2
1 2

2 2
3 4

1 2 3 4

1
, cos [ cosh sinh ...

               cosh 2 sinh sinh 2 cosh ] ...

              cos cosh sinh cosh sinh

u x y x C y C y
E

C y y y C y y y

x C y C y C y y C y y
E

    


       

     


  

   


  

 (5.4) 

   

   

 

   

1 2

3 4

1 2

3 4

, sin [ sinh cosh ...

                sinh cosh cosh sinh ] ...

1
                sin [ sinh cosh ...

                sinh cosh cosh sinh ]

v x y x C y C y
E
C y y y C y y y

x C y C y
E

C y y y C y y y

     

     

    

       


  

   


 

  

 (5.5) 

where the Ci coefficients are given by the problem loading and geometry 

 

 

 

 

1 2
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3 2
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sinh cosh

sinh 2 2
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sinh 2 2

sinh

sinh 2 2

A B c c c
C

c c
A B c c c

C
c c

A B c
C

c c
A B c

C
c c

  
  

  
  

 
  

 
  

 



 

 








 


 (5.6) 
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Figure 5.1:  Timoshenko and Goodier example 3.24 

The closed-form analytic sensitivity to beam length is obtained by differentiating (5.1)-

(5.5) with respect to L (through its implicit dependence on α).  The left edge of the beam 

is fixed, and the right edge will vary as L.  The domain is parameterized with respect to 

beam length as so that the material coordinates of the boundaries are given by 
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 (5.7) 

where the i’s are defined in Figure 5.2.  The domain sensitivity to beam length is then 
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 (5.8) 
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The boundary data for the elasticity problem is also depicted in Figure 5.2 and is repeated 

in Table 5.1 where it is compared with the boundary data for the sensitivity problem.  The 

boundary data for the sensitivity problem is derived from 

 LL D

L DL L



 


   
 X

xu u
u u  (5.9) 

where the total derivative for the constrained variables is zero for the sensitivity problem. 

 

Figure 5.2: Timoshenko and Goodier example 3.24 boundary conditions 
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Table 5.1: Boundary Data for Timoshenko and Goodier example 3.24 elasticity and 
sensitivity problems 

Boundary Elasticity Problem Sensitivity Problem 

1 0xx   0xx   

2 & 4 1
2 sin

0

yy

xy

x

L
 



 


 

1
, 2 cos

0

L
yy yy x

L
xy

x x x   



  



3 0xx   
,

L
xx xx x    

5 & 7 0v   
, 0L
xv v    

6 0u   1
,2

L
xu u   

 

The LSFEM solution, computed on a four element mesh for p = 12, is plotted in 

Figure 5.2 and can compared to the analytic solution in Figure 5.1.  The L2 residual error 

norm for the LSFEM solution is on the order of 10-11 and the absolute error difference 

between the LSFEM solution and the analytic stress field is on the order of 10-10.  The 

detail and accuracy of the higher-order p-value on a fairly coarse mesh is an 

extraordinary testament of the merits of p-type elements in the LSFEM solution. 
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Figure 5.3:  T&G LSFEM solution and residual (p = 12) 

The least-squares CSE solution, computed on the same computational four-

element mesh used for the original problem, is plotted in Figure 5.4 and compared to the 

analytic sensitivities Figure 5.5.  Again, a p-value of 12 was used for the least-squares 

CSE solution.  The L2 residual error norm for the LSFEM solution is on the order of 

1010 , an order of magnitude reduction in accuracy from the original solution.  This 

matches conclusions made by previous researchers that a more refined mesh is commonly 

needed for the CSE system [120].  In practice, we take advantage of the p-element 

implementation and simply increase the p-order while maintaining the same 

computational mesh. 
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The total material analytic derivative is computed by adding the transport term 

associated with the domain parameterization given by (5.7) to the analytic local 

sensitivity.  The material derivative for the entire domain is plotted in Figure 5.6 which 

should be compared to the local sensitivity in Figure 5.5.  The LS-CSE, analytic 

sensitivities, and finite difference calculations are further compared in Figure 5.7 and 

Figure 5.8.  Note that finite difference derivatives are by nature total derivatives and that 

they match the LS-CSE total sensitivity calculations.  Additionally, the difference 

between the local and total derivative values is clearly evident by comparing Figure 5.5 

and Figure 5.6.  The potential pitfalls in neglecting the distinction between the local and 

total derivative was discussed in Section 3.3.2. 

 

 

Figure 5.4:  T&G CSE solution and residual (p = 12) for sensitivity to beam length  
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Figure 5.5: T&G analytic local sensitivity to beam length 

 

Figure 5.6:  T&G CSE analytic total sensitivity to beam length 
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Figure 5.7:  Comparison of T&G LS-CSE and analytic derivatives for on boundary 3 
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Figure 5.8:  Comparison of T&G LS-CSE and analytic derivatives for on Boundary 4 

5.2 Plate with a hole 

Determining the stress concentration for a thin plate with an unstressed hole is a 

classic problem in strength of materials and a common exercise in FEM analysis.  An 

analytic solution exists for a circular hole in an infinite plate subject to uniaxial tension 

[124], and results for finite plates under biaxial loading with a variety of hole dimensions 

are plotted as a function of load and plate/hole dimensions [91, 111].  To illustrate the 

least-square continuous sensitivity method, we consider the shape optimization of an 

elliptic cut-out in a biaxially loaded plate, Figure 5.9.  The objective of the optimization 

is to obtain a uniform distribution of tangential stress along the hole.  The problem was 
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posed and solved by Bhaskaran and Berkooz [18] using a sensitivity equation method, 

but details of the sensitivity calculations were not included in the paper.  We first present 

details of the LS-CSE solution to an infinite plate for which an analytic solution exists, 

and then use the CSE solution to optimize the problem considered in [18].  The objective 

is to provide sufficient detail in the derivation and results such that this problem can serve 

as a verification benchmark for structural sensitivity analysis. 

 

Figure 5.9:  Plate with an elliptical hole 

Table 5.2:  Boundary conditions for plate with a circular hole 

Boundary Boundary Condition 

1 0,    0xyv      plate symmetry 

2 &  xx xy     analytic solution 

3 &  yy xy     analytic solution 

4 0,    0xyu      plate symmetry 

5 0,    0n       stress free hole 
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5.2.1 Infinite Plate Analytic Solution 

Consider first an infinite plate with a circular hole, 1
4a b   subject to a uniaxial 

load in the x-direction,  
2

10    .  By virtue of biaxial symmetry, only a quadrant of 

the domain can be used as the computational domain (boundary conditions are given in 

Table 5.2).  To obtain LSFEM results that can be compared to the analytic solution, the 

analytic normal and tangential stress distribution on boundaries 2 and 3 are imposed as 

boundary conditions (take lx = ly = 4a = 1).  We first consider the solution of the 

elasticity system and then the solution to the CSE system.  The analytic stress and 

displacement solutions for a circular hole are [124]  

      
3

3
, 1 cos 2 1 cos cos3 2 cos3

8

a r a a
u r

G a r r

        
      

 
 (5.10) 

      
3

3
, 3 sin 2 1 sin sin 3 2 sin 3

8

a r a a
v r

G a r r

        
      

 
 (5.11) 

 
2 4

2 4

3 3
, 1 cos 2 cos 4 cos 4

2 2xx

a a
r

r r
     

         
 (5.12) 

 
2 4

2 4

1 3
, cos 2 cos 4 cos 4

2 2yy

a a
r

r r
     

       
  

 (5.13) 

 
2 4

2 4

1 3
, sin 2 sin 4 sin 4

2 2xy

a a
r

r r
     

       
  

 (5.14) 

where    3 1      and the modulus of rigidity,   2 1G E   .  We take 

Poisson's ratio, ν = 1/3, and non-dimensionalize the equations so that E = 1.  The LSFEM 

solution for an 18-element mesh with 8th order polynomials (p = 8) is given in Figure 
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5.10.  The solution along the hole, 5 , is compared with the analytic solution in Figure 

5.11.  One of the advantages of an LSFEM approach is that the solution permits a readily 

available error estimate in the form of the residual.  Both the residual and the error norm 

are on the order of 10-4 for this relatively coarse mesh and moderate p-value.  The peak 

normal stress at the apex of the hole is 30, leading to a stress concentration factor of 3, 

which matches the result obtained from strength of materials [91]. 

 

Figure 5.10  LSFEM Solution  8p   for Displacements  ,u v , Stresses  , ,x y xy   , 

and Residual Error Norm of a Quarter Plate with a Circular Hole Subject to Normal-x 
Stress Value of 10. 
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Figure 5.11  Comparison of LSFEM and Analytic Solution Along the Hole  8p   

 

Since the elasticity equations are linear, the LS-CSE first-order matrix operators 

are identical to the elasticity system operators.  The boundary conditions at the hole 

remain the same (stress free) regardless of hole radius, hence the total material derivative 

of radial and shear along the hole is zero.  Thus, the CSE boundary conditions along the 

hole are determined only by the transport term in (3.13).  Taking hole radius, a, as the 

shape parameter, the 1, 4, and 5 boundaries change with the hole.  The hole 

coordinates are easily parameterized in polar coordinates as 
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X
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Similarly, in Cartesian coordinates, 
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 
 

1
1 0 0,1
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T
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a
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            
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 (5.17) 
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 (5.18) 

Then, for a circular hole with a = b 

    
 1 , 1 0 0,1

T

a
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X       (5.19) 

    
 4 , 0 1 0,1

T

a
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X       (5.20) 

Now, differentiating the boundary conditions along 1 and 4 and evaluating the 

convection term with (5.19) and (5.20) yields the CSE boundary conditions for the 1 and 

4 boundaries 
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 (5.22) 

For 5, the gradients in the convection term must be calculated from the gradients of the 

LSFEM solution and are not available by inspection as they are for 1 and 4.  The 5 

CSE boundary conditions are 
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where it should be noted that the gradient operator and boundary set definition must be 

expressed in the same coordinate system.  The radial, shear, and tangential stress 

components along the hole are given by 

cos sin cos sin

sin cos sin cos
xx xyrr r

yx yyr



 

      
      
       

             
 (5.24) 

Using this coordinate transformation and the polar coordinate gradient operator 

 
1

r r r 
 

 
 

 (5.25) 

the radial gradients of the normal and shear stress components are 
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Expressing the radial gradient through the chain rule      d x y

dr x r y r

    
  

   
 and 

noting that , cosrx   and , sinry   yields the final radial and tangential stress CSE 

boundary conditions in terms of Cartesian components 
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The spatial derivatives of the Cartesian stress components required in (5.28) and (5.29) 

come from the gradients of the shape functions of the LSFEM solution.  The analytic and 
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LSFEM-derived boundary conditions for the hole in the CSE problem are compared in 

Figure 5.12.   

 

 

Figure 5.12  Comparison of analytic and LSFEM-derived sensitivity boundary conditions 

 

Analytic sensitivities are readily obtained by differentiating (5.10)-(5.14) with 

respect to hole radius, a.  The analytic sensitivities are 
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The LS-CSE solution for the same 18-element mesh (p = 8) is given in Figure 

5.13.  The local sensitivity solution for tangential stress along the hole is compared with 

the analytic solution in Figure 5.14.  The finite difference and the total sensitivity 

calculated from the LS-CSE solution are also plotted in Figure 5.14.  Note that as in the 

bar example given previously, the local and total derivatives yield significantly different 

results.  The tangential stress along the hole of an infinite plate does not depend on the 

hole radius so the total sensitivity of the tangential stress at material points on the hole 

boundary is zero as expected. 

 

 

Figure 5.13  LS-CSE Solution  8p   and Residual Error Norm for the Sensitivity of 

Field Variables to Hole Radius, a, for a Quarter Plate with a Circular Hole 
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Figure 5.14  Comparison of Analytic, Finite Difference, and LS-CSE Solutions along the 
Hole Boundary for Tangential Stress Sensitivity to Hole Radius, a 

 

Figure 5.15 plots the p-convergence for both the elasticity and sensitivity 

problems as well as the convergence of the maximum stress within the plate normalized 

by the loading stress.  Note that for p = 8, the stress concentration approaches 

asymptotically the theoretical stress concentration factor of 3.  The residual and the error 

norm for the p = 8 sensitivity solution given in Figure 5.13 and Figure 5.14 are both on 

the order of 10-2; two orders of magnitude greater than the original LSFEM problem at 

the same p-value.  A polynomial order of 11 yields the equivalent 10-4 error for the LS-

CSE problem as compared to the original LSFEM residual at p = 8.  CSE systems 

typically have steeper gradients in the vicinity of a boundary subject to shape variation 

than the original problem and often require a higher p-value (or finer mesh) than the 

original system—a result previously observed [120, 135].  It is convenient to use the 

same mesh for both the original system and the sensitivity system and to obtain the more 
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refined solution through higher-order p-elements.  This is a distinct advantage of higher-

order FEM, since p-refinement allows a straightforward means to achieve a refined 

solution without needing a refined mesh. 
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Figure 5.15 Elasticity and Sensitivity Problem p-convergence and Stress-Concentration 
Convergence for a Uniaxially Loaded Plate with a Circular Hole 

 

5.2.2 Shape Optimization of a Biaxially-Loaded Plate with a Hole 

Bhaskaran and Berkooz posed a shape optimization problem based on the plate 

with a hole which seeks the optimum dimensions of an elliptical hole to obtain a uniform 

distribution of the tangential stress along the hole [18].  The semi-major axis of the 

ellipse is constrained to be one-fifth of the edge of the square plate, and the semi-minor 

axis is taken as the design parameter.  The applied loads are 1xx   MPa and 0.75yy   

MPa.  The objective function to be minimized is 
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 
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2
J dE 



   (5.35) 

where E is the eccentric anomaly of the elliptical hole and the mean tangential stress 

along the hole is 

/ 2
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2
dE


  


   (5.36) 

Bhaskaran and Berkooz posed the objective function as an integral over arc length.  

Evaluating the objective function (5.35) with respect to eccentric anomaly instead of arc 

length is equivalent to Bhaskaran and Berkooz but is simpler to implement since the 

sensitivity of the arc length (which is a function of semi-minor axis of the ellipse) does 

not have to be calculated.  The only boundaries defined in Figure 5.9 that depend on the 

semi-minor axis are 4  and 5 .  The first is parameterized by (5.18) and 5  is given (in 

Cartesian coordinates) by 

  5
 cos sin

T
X a E b E   (5.37) 

so that  

  5 ,  0 sin
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The objective function material gradient with respect to the semi-minor axis is 
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where for the parameterization given by (5.37) 
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The tangential stress sensitivity, b
 , is determined from the solution to the LS-CSE 

system.  The CSE problem has homogeneous boundary conditions on every boundary 

except 5  which are given by 
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b
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 (5.42) 

The analytic stress concentration factors for an infinite biaxially-loaded plate are 

based on the maximum normal stresses A  and B  [91] 
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where the points A and B are the apex and shoulder points indicated in Figure 5.9.  

Equating the stress concentration at these two points yields the desired uniform tangential 

stress around the ellipse and requires that 

3
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b

a








  (5.45) 

which yields an optimum semi-minor axis of 0.75 for the given loading.  For an infinite 

plate, this yields a uniform stress concentration value of 1.75 around the hole.  Various 

finite-width corrections [91] for semi-infinite plates under uniaxial loading yield 

approximate values 3% higher for stress concentrations for hole-to-edge ratios of 0.2.  

This implies a uniform tangential stress of 1.8 MPa for the present case which is very 

close to the 1.797 MPa result obtained from the simple line-search optimization based on 

the LS-CSE objective gradient of (5.39).  The convergence history for the tangential 

stress is plotted in Figure 5.16 along with values of the objective function as a function of 
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eccentric anomaly along the hole.  Values of the objective function and total objective 

function gradient are also summarized in Table 5.3.  Note also that the residual error of 

10-3 is comparable to the accuracy obtained in achieving a uniform stress distribution.  

This highlights that advantage of the built-in error estimate of the LSFEM approach. 

Table 5.3:  Plate with a elliptical hole optimization 

b  J  bD J    

1.0 1.56 E-1  1.960 1.814 

0.804 6.00 E-3  0.363 1.799 

0.764 2.88 E-4  0.140 1.797 

0.75 9.22 E-5 -0.0118 1.797 

 

 

Figure 5.16  Tangential stress optimization convergence to uniform value  1.797   

as a function of eccentric anomaly  E  and Objective function value as a function of 

semi-minor axis  b  
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5.3 Summary 

This chapter demonstrated the LS-CSE method for several 2D elasticity problems.  

Continuous sensitivity was first introduced for elasticity systems, but, as noted in Chapter 

2, there is a dearth of applications of the method to actual problems.  This may be in part 

that the derivation of the continuous sensitivity equations in the literature tends to 

obscure the simplicity of the continuous sensitivity system when posed in local derivative 

form.  The local derivative form also leads to simpler boundary conditions for elasticity 

problems.  Another advantage of the local derivative form demonstrated in these 

examples, is that only the boundary parameterization for shape variation problems need 

be described.  This avoids having to define a parameterization or transformation function 

for the entire domain unless the material derivatives are also desired.  The conversion 

from local to total sensitivity solution was demonstrated in each of the example problems 

and compared to analytic and finite difference sensitivities.  Additionally, the LS-CSE 

results were used to demonstrate the optimization of an example problem from the 

literature. 

The next chapter will demonstrate the LS-CSE method for several different fluid 

problems before we turn to the sensitivity analysis of FSI problems in a subsequent 

chapter. 
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6 LS-CSE For Fluids 

This chapter presents two fluid flow problems together with flow sensitivity 

problems.  This first problem (Section 6.1) is that of Stokes flow about a sphere which 

has an analytic solution and analytic sensitivity.  The second problem (Section 6.2) is 

potential flow about an airfoil that is further studied in the FSI problems of the next 

Chapter. 

6.1 Sphere in Stokes Flow 

We now consider Stokes flow about an immersed sphere, a problem originally 

posed and solved by Stokes, c. 1851, using a stream function approach.  The description 

and analytic solution are from [133], section 3.9-2.  For sensitivity calculations, we take 

the sphere radius as the shape parameter. 

The stream function for creeping flow past a sphere in polar coordinates is  
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Additionally, 
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so that the analytic sensitivity to the sphere radius a is  
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Vorticity is determined by taking the curl of velocity in curvilinear coordinates [74] 

which in 2D polar coordinates reduces to  
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1
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Thus, the vorticity is given by 
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and the vorticity sensitivity to the sphere radius is 
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a 

 0 0,x y

 1 1,x y

3
 

Figure 6.1: Sphere surface boundary parameterization and description. 

The domain is parameterized with respect to sphere radius so that the material 

coordinates of the sphere surface boundary, 3, are given by 
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  
3

,r r a  X  (6.13) 

The 3 material coordinate sensitivity to a is then 

  
3 , 1,0a X  (6.14) 

The computational mesh for the flow and sensitivity problems is a half-sphere 

domain based on the symmetry of the problem, Figure 6.2 and Figure 6.3, which also 

includes descriptions of the boundary conditions. 

 

Figure 6.2:  Immersed sphere computational mesh and boundary conditions 
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Figure 6.3:  Immersed sphere sensitivity boundary conditions 

The LSFEM solution and analytic solutions are plotted in Figure 6.4 and Figure 

6.5 and the sensitivities are plotted in Figure 6.6 and Figure 6.7.  Another comparison of 

Stokes’ flow is given in the next Section 7.2 in the context of an FSI solution. 
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Figure 6.4: Sphere immersed in Stokes flow analytic solution 

 

Figure 6.5:  LSFEM solution for sphere immersed in Stokes Flow 
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Figure 6.6:  Sphere immersed in Stokes flow analytic sensitivity 

 

Figure 6.7:  LS-CSE for sphere immersed in Stokes flow  
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6.2 Airfoil in potential flow 

The LSFEM linear potential flow solution for a NACA 0012 airfoil at 10 deg 

angle of attack is given in Figure 6.8.  Note that this is a zoom image of the 

computational mesh which extends out to a radius of 15 chord lengths in all directions, 

Figure 6.9.  The velocity components along the upper and lower surface of the airfoil are 

compared with a vortex panel solution from [43] in Figure 6.10.  The Cp values for the 

pressure derived from Bernoulli’s equation is also compared with the vortex panel 

solution in Figure 6.11.  The freestream flow boundary conditions are a function of angle 

of attack: 

cos
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u U

v U
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
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 (6.15) 

where U  is the freestream velocity and α is the angle of attack of the airfoil.  The 

boundary conditions on the surface of the airfoil are 

ˆ 0n u  (6.16) 

where n̂  is the outward surface normal unit vector and  T
u vu  are the velocity 

components and primary variables. 

The flow sensitivity to angle of attack will be of interest in some of the Chapter 7 

example FSI problems.  The boundary conditions for the CSE problem are 
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and 

ˆ 0n  u  (6.18) 

The angle of attack CSE solution is plotted in Figure 6.12 and Figure 6.13. 
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Figure 6.8:  Velocity component solution for potential flow about NACA 0012 airfoil at 
10 deg AOA (p = 12) 

  

Figure 6.9:  NACA 0012 airfoil 238 element computational mesh (full mesh, left; close-
up of airfoil, right) 
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Figure 6.10:  Comparison of flow solution at airfoil surface to vortex panel solution (p = 

12) 

 

Figure 6.11:  Cp for LSFEM and vortex panel for NACA 0012 airfoil 
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Figure 6.12: Potential flow u component velocity sensitivity to angle of attack for NACA 
0012 airfoil. 

 

Figure 6.13: Potential flow v component velocity sensitivity to angle of attack for NACA 
0012 airfoil. 
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We now compare the steady, compressible solution for flow about a NACA 0012 

airfoil using two different models.  The first is the nonlinear, compressible potential 

model developed in Section 4.5.2.  In the second, pressure is determined through 

Bernoulli’s equation of the vortex panel solution (which has already been compared and 

is equivalent to an incompressible solution of the linear potential flow equation in which 

the speed of sound becomes infinite).  The pressure is then corrected for compressibility 

using the Prandtl-Glauret compressibility correction (4.73).  The results are plotted in 

Figure 6.14 for a 10 deg angle of attack flow at 0.5 M.  Eight nonlinear iterations using 

direct substitution are required for the compressible potential solution.  The agreement is 

very good except for the very tip of the leading edge of the airfoil.  The LS residual in the 

elements at the leading edge is an order of magnitude greater than the residual in the 

elements along the rest of the surface of the airfoil.  The LE residual improves with 

increased p, but the solution in Figure 6.14 is the highest p within the given desktop 

computer memory limits.  It is expected that further h (mesh size) or p refinement would 

improve the convergence of the LE solution the compressibility-corrected linear potential 

solution and the vortex panel solution.  The very close agreement of the compressibility-

corrected linear potential solution with the more computationally expensive FPE solution 

motivates a strategy for employing the compressibility-corrected linear potential solution 

for computationally expensive FSI problems.  The next chapter presents LS-CSE 

sensitivity solutions for FSI including linear potential flow, compressibility-corrected 

flow, and full potential equation flow. 
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Figure 6.14:  Steady, compressible flow solution (0.5 M) for the nonlinear potential 
model (8 nonlinear iterations) and the linear potential solution and vortex panel data 
corrected for compressibility 
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7 LS-CSE For Transient FSI 

The least-squares continuous sensitivity method is now applied to calculate the 

shape design sensitivities for a series of fluid-structure example problems.  The first two 

examples employ a monolithic (fully-coupled) fluid-structure analysis and sensitivity 

formulation.  Section 7.1, the Golden Piston, is a simple, steady problem with closed 

form solutions for both the analysis and sensitivity problems that serves to illustrate all 

aspects of the fluid-structure interaction calculations.  Section 7.2, a flexible beam 

immersed in channel flow, is a more complicated problem that was previously reported in 

[135].  Section 7.3 describes the analysis and sensitivity of an airfoil mounted on a 

flexible sting that is motivated by the gust response of a joined wing configuration.  The 

steady solution, Section 7.3.1, considers both linear potential and compressible potential 

fluid equations and is compared with an analytic solution.  A typical section aeroelastic 

model that is used for validation of the transient solutions that follow is described in 

Section 7.3.2.  The transient gust response model is also described in this section.  The 

full potential transient FSI with nonlinear structural gust response is detailed in Section 

7.3.3.  This includes structural buckling, a characteristic of joined wing configurations.  

Finally, the nonlinear, transient compressible FSI solution is compared with the linear 

potential solution corrected for compressibility in Section 7.3.4.  The close agreement 

between these approaches should permit significant computational savings in future 

analysis since the nonlinear, compressible fluid solution can be modeled from the linear 

potential fluid solution. 

The series of example problems considered in Section 7.3 contain all the aspects 

of more complex fluid-structure interaction problems, but are relatively small scale which 
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makes them interesting examples for the study of various phenomena including 

compressibility, geometric nonlinear stiffening, buckling, and the sensitivity of each of 

these responses to design parameters.  In addition to validating the use of linear potential 

fluid corrected for compressibility, the model problem is itself a promising test case for 

the verification and validation of other fluid-structure interaction solvers. 

7.1 Golden Piston 

The Golden Piston problem consists of an inflexible pressure vessel with a 

flexible bar (piston) at one end that can compress in response to the static pressure in the 

pressure vessel, Figure 7.1.  As the piston moves to the right, the fluid-structure interface 

moves right, increasing the volume of the chamber with a corresponding drop in the static 

pressure.  The fluid variables are pressure, p, and the structure variables are displacement 

and stress, u and σ.  The fluid-structure interface condition is the equilibrium condition 

between the fluid forces and the structure forces at the tip of the bar 

 :sf
xp     (7.1) 

 

Figure 7.1:  Golden Piston problem description 

The analytic solution for the displacement of the interface, pressure, and stress is 

0p

f s
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      (7.2) 

0

0
f

f x

L
p p

L u



 (7.3) 

x p    (7.4) 

where p0 is the initial pressure in the chamber, Lf is the length of the pressure vessel, Ls is 

the length of the bar, and E and A are the modulus and cross section of the bar.  For 

0 1s fE L L p     with no body forces, the analytic solution for pressure, stress, and 

interface displacement is 

0

1
xu p


     (7.5) 

where  is the famous golden ratio or golden mean: 
1 5

1.618...
2

 
  .  Hence the 

moniker for the problem.  Taking bar length as the shape design parameter, the analytic 

sensitivities to bar length are 

1
2

0,

2 0 01 1
2 4Ls

x f s f f

p p
u L L L L

E E


    

 (7.6) 
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 (7.8) 

The fully-coupled total residual for the FSI problem is 

 

i i

weak

s s f f sf sf
tot

i

J J J J J    

 

      (7.9) 

where α are the weighting factors for each of the component residuals (s: structure, f: 

fluid, sf: fluid-structure interface relations) and the last term is the boundary residual for 
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any weakly (integral) enforced boundary conditions.  The monolithic LSFEM model then 

has the form 

0

0

s s s s
sf sf sf sf

f f f f

 


 


    
      

     

K F
K u G

K F
 (7.10) 

For a single, linear bar element (p = 1) and a single fluid element, the monolithic system 

is 
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where the 2 boundary is the bar’s fixed right end.  The last term on the left-hand side is 

the weak boundary system which may by enforced directly instead of including it in 

(7.11).  Since the original monolithic system is nonlinear (due to the fluid force 

dependence on interface displacement), the LS-CSE finite element model takes a 

different form.  The linear LS-CSE system is 
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 (7.12) 

where, as before, the weak boundary matrix associated with the bar’s fixed end may be 

enforced directly.  The numerical solution to (7.11) is 
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187 

which matches the analytic solution (7.5) (note that one of the properties of the golden 

ratio is that 
1

1

  ).  The solution to the LS-CSE system (7.12) is 

1

1

2

2

1
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 (7.14) 

which again matches (7.6)-(7.8). 

This is an interesting problem in that it is small enough to be solved by hand and 

yet it illustrates all of the aspects of a monolithic, fully-coupled FSI system with weak 

boundary enforcement.  In addition, the FSI problem is nonlinear and results in a good 

demonstration of the sensitivity solution to a nonlinear FSI problem.  Further, the analytic 

solution is readily compared with the FEM solution.  We now turn to the sensitivity 

analysis of another FSI problem with an analytic FSI solution. 

7.2 Flexible beam in a channel 

The example FSI problem in Figure 7.2 has a closed-form analytic solution [130].  

A flexible 1D Euler-Bernoulli beam divides two channels with pressure-driven Stokes 

flow.  A difference in flow rates for the two channels results in a differential pressure 

load and deflection of the beam. 
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Figure 7.2:  Beam immersed in a channel flow (X. Wang) 

The FSI problem boundary conditions are given in Table 7.1.  The fluid-structure 

interface is coupled with the fluid and structure domain residuals to form a fully-coupled, 

monolithic FSI problem.  The fluid mesh deformation problem is decoupled from the FSI 

problem.  This maintains the parallel structure of the sensitivity system with the FSI 

solution.  Including the mesh deformation in the FSI problem would result in calculating 

the mesh sensitivity during the CSE; a computational expense that is not required when 

the sensitivity problem is posed in local derivative form. 

Table 7.1:  Beam in channel flow boundary conditions 

Boundary Constrained dofs 

inlet   2
,

1

2 xu yh y p



   ; , yu    fully-developed Poiseuille flow 

outlet 0     1v p   uniform outflow 

walls 
cos sin 0

sin cos 0

f s f s
t

f s f s
n

u u v

u u v

 

 

  

   
    no slip wall 

beam-fluid 
interface  , 1 2 0s f f

y xV p p    force equilibrium 

mesh   10i iihw h y d  vertically scaled deformation 
(de-coupled from FSI solution) 

 

The slip wall (fluid-structure interface) relation in terms of the fluid tangential and 

normal velocities 
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cos sin 0

sin cos 0

f s f s
t

f s f s
n

u u v

u u v

 

 

  

   
 (7.15) 

where s  is the beam rotation and the f superscript represents fluid variables.  This is a 

nonlinear fluid-structure coupling term which appears in the FSI problem through the 

boundary integral evaluation.  However, because of the small deflections of the structure, 

a single iteration results in a converged solution (note that both the fluid and structure 

equations are linear).  The total fluid residual after a single iteration is on the order of 

1310 .  Referring to Figure 7.3, the greatest fluid residual is in the vicinity of the inlet 

where the mesh does not change.  Subsequent iterations with the deformed mesh does not 

change the level of the residual in either the fluid or structure.  The LSFEM FSI solution 

for the problem parameters given Table 7.2 is plotted in Figure 7.3.  The beam deflection 

is compared to the analytic solution [130] in Figure 7.4 

Table 7.2:  Immersed Beam Problem Parameters 
310EI   beam stiffness 

1

10
   fluid viscosity 

, 10xp     top channel pressure gradient 

, 5xp    bottom channel pressure gradient 
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Figure 7.3:  LSFEM FSI solution (p = 2) showing beam deflection 
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Figure 7.4:  LSFEM and analytic solution for beam deflection 

Taking the upper channel height as a shape design parameter.  We compute the 

sensitivity of the fluid domain flow and the beam deflection to the upper channel height 

given that the flow rate through the upper channel is constant as the channel height 

changes.  The upper channel wall is parameterized as the Cartesian ordered pair 

    
1

1 | 0,topX H L 


   (7.16) 

where L is the length of the channel.  Then 

  
1

1

0 1topX
H 





 (7.17) 

Since the upper wall remains a no slip wall with variations in H1, the upper wall CSE 

boundary condition reduces to 

1 ,

,1

0
top

fH f f
y
fH f f
y

X uu u

vHv v


                      
 (7.18) 

Similarly, parameterizing the upper inlet by 

    
1

1
1 20 2 | 0,inletX H y 


    (7.19) 
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and noting that the inlet fully-developed velocity profile and vorticity are functions of the 

channel height yields the upper inlet CSE boundary conditions 

 
1 , ,

, ,1 1

21
22

inlet
f f fH f f

x y
fH f f

x y

XD u yp yuu u
p yDH H


 


                              

 (7.20) 

The upper outlet boundary conditions are handled in the same manner, however the y-

component gradient of both vf and pf are zero and the uniform outflow does not change, 

so the outlet boundary conditions reduce to zero.  No other boundaries are affected by a 

variation in upper channel height and thus the remaining CSE boundary conditions are 

homogeneous. 

The least-squares CSE solution is given in Figure 7.5 and the beam deflection is 

compared to a pseudo-analytic sensitivity in Figure 7.6.  Although there is an analytic 

solution for beam deflection in the form of a solution to a differential equation in [130], 

an analytic sensitivity for the solution to channel height is not available in closed-form.  

However, a pseudo-analytic sensitivity is determined by calculating the transverse 

deflection of the beam to a pseudo-pressure load.  The pseudo-pressure load is the 

differential pressure change in a channel of constant flow rate due to a variation in 

channel height.  The average relative difference between the CSE and pseudo-analytic 

sensitivity is 2% and the maximum is less than 6% at the tip of the beam.  The transverse 

pseudo-load is integrated along the length of the clamped beam explaining why the 

relative sensitivity difference increases towards to tip.  Note that a p-value of 12 (an order 

of magnitude higher) was needed for the CSE system to achieve an equivalent residual 

level to the parent FSI problem.  Examining the element residual plot in Figure 7.5, it is 

clear that the mesh is far from optimally graded.  Nevertheless, the need for a more 
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refined solution to the CSE system is an observation previously made with regard to other 

systems [120].  It is convenient to use the same mesh for both the FSI system and the 

sensitivity system.  This is a distinct advantage of higher-order FEM, since p-refinement 

allows a straightforward means to achieve a refined solution without needing a refined 

mesh. 

 

Figure 7.5:  LS CSE solution (p = 12) showing beam deflection sensitivity 
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Figure 7.6:  LS-CSE beam deflection sensitivity and relative error 

We next consider a FSI problem motivated by the joined wing of particular 

interest to the sponsor. 

7.3 Airfoil on a Sting  

The analysis and sensitivity for a series of FSI models is now considered for a 

basic example traceable to the joined wing which exhibits nonlinear gust characteristics.  

This includes a nonlinear, geometric softening of the structure that leads to buckling in 

the aft wing of a joined wing.  We consider the steady solution, for which an analytic 

solution exists, as well as transient solutions which are validated using typical section 
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aerodynamics.  We also compare compressible and incompressible solutions using 

nonlinear full potential and linear potential flow models. 

Consider a NACA 0012 airfoil mounted on a flexible sting (Figure 7.7).  The 

sting is modeled as a nonlinear Euler-Bernoulli beam capable of large deflections.  At a 

positive angle of attack, the airfoil generates lift, deflecting the beam in the fluid resulting 

in an increased angle of attack.  Equilibrium deflection of the sting occurs when the force 

and moments generated by the lifting airfoil balance the internal sting force and moments 

resisting the bending.  The transient response to a discrete gust front flowing past the 

airfoil is modeled and evaluated. 

i   

U

Sting (nonlinear EB beam)

L
i



i   

U

Sting (nonlinear EB beam)

L
i



i   

U

Sting (nonlinear EB beam)

L
i



Sting (nonlinear EB beam)

L
i



 

Figure 7.7:  Flexible sting mounted airfoil 

For the sensitivity problem, we consider beam length, airfoil angle of incidence, 

and airfoil chord length as shape parameters.  Both the fluid and structure sensitivities are 

calculated for the FSI response.  As a primary example of the approach, take the sting 

length as a shape parameter.  The left and right boundaries of the sting, the tip and root, 

are naturally parameterized with respect to beam length as 

   0   ,    tip root L X X  (7.21) 

To convert the local sensitivities into a total derivative, we must define a domain 

transformation function that is compatible with the FSI boundary data.  An obvious 

choice which does not unnecessarily complicate the fluid sensitivity boundary conditions 
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is represented in Figure 7.8.  Below we consider chord length as a fluid domain shape 

parameter which will involve more complicated fluid sensitivity boundary conditions.  

For the domain variation depicted in Figure 7.8, define the material points of the domain 

by 

    | ;  0,1x L x L     X  (7.22) 

 

Figure 7.8: Sting length boundary parameterization 

We first consider a steady solution for both compressible and incompressible 

potential fluid flow in the next section. 

7.3.1 Steady Solution (Linear and Compressible Potential, Linear Structure) 

The analytic solution to the steady airfoil on a sting problem described above is 

based on fluid-structure force equilibrium.  The fluid force (lift per unit span) is given by 

 f L L tip iF q cC q cC
 
       (7.23) 

where 21
2q V    is the dynamic pressure, c is the chord length, and LC


 is the lift 

curve slope.  The angle of attack α is the sum of the airfoil angle of incidence αi 

(“installed AOA”) and the beam tip deflection, tip .  On the basis of disturbed potential 

flow for thin airfoils [126], the compressibility corrected lift curve slope is 

2
LC





  (7.24) 

where 

21 M    (7.25) 

 0tip X   root LX  
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is the compressibility correction factor and M  is the freestream Mach number.  When 

applied to the pressure coefficient 

,0p
p

C
C


  (7.26) 

the compressibility correction is the well-known Prandtl-Glauert rule.  Corrections that 

provide more accurate results for transonic Mach numbers were given in Section 4.5.2. 

For the steady deflection of the airfoil on a sting, the fluid force is in equilibrium 

with the structure internal shear at the tip 

f y tip
F V   (7.27) 

where the negative sign is due to the sign convention on the “negative face” of the beam.  

The equilibrium balance (7.27) is valid for small deflections, but a modification to this 

relation will be necessary below to accurately model the geometric nonlinearity of large 

deflections. 

Since the NACA 0012 airfoil is symmetric and the airfoil is mounted to the tip of 

the sting at the aerodynamic center of the airfoil, the moment at the tip of the sting is 

zero.  The equilibrium tip rotation of the sting is then 

2

2
f

tip

F L

EI
   (7.28) 

and the equilibrium fluid force is 

12 2
1f i

q c L q c
F

EI

  
 



  
  
 

 (7.29) 

The divergence dynamic pressure is the speed at which (7.29) becomes singular.  For the 

incompressible case, the divergence dynamic pressure is 
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2D

EI
q

c L
  (7.30) 

For the compressible case, the divergence Mach number is  

 
 

2

22 4 2

41 1

2 4D

EI
M

a c L 

    (7.31) 

We also use the beam stiffness, EI, to tune the problem for a desired angular deflection of 

the tip, tip , for a given freestream velocity through 

2

1i

tip

q c L
EI

 
 


 

   
 

 (7.32) 

Leading to the ratio of dynamic to divergence pressure of 

tip

D tip i

q

q


 

 


 (7.33) 

For a 3 deg angle of incidence and 10 deg steady tip deflection, this yields a stability 

margin of 23%. 

Table 7.3:  Sting-mounted airfoil FSI problem boundary conditions 

Boundary Constrained dofs 

fluid IC 10     0      v     steady equilibrium 

beam IC 0      v   steady equilibrium 

beam root BC 0      0     0v v    clamped 

beam tip interface     , ,       0y f g zV t F v V t M    
fluid-structure interface 
(force equilibrium) 

 

Table 7.4:  Sting-mounted airfoil CSE problem boundary conditions 

Boundary Constrained dofs 

beam IC 0      Lv   steady equilibrium 

beam root BC , , ,       L L L
x x xv v v v         clamped 

beam tip interface      0L L L
y f zV t F M    fluid-structure interface 

(force equilibrium) 
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The fluid forces for the LSFEM solution are calculated by integrating the pressure 

difference across the top and bottom of the airfoil in the airfoil coordinate system 

depicted in Figure 7.9. 

cos cos
a

TE TE

x u u l l

LE LE

F p d p d        (7.34) 

sin sin
a

TE TE

y u u l l

LE LE

F p d p d       (7.35) 

where pl and pu are the fluid pressures on the lower and upper surface of the airfoil 

respectively and β is the surface normal angle shown in Figure 7.9. 

 

Figure 7.9:  Airfoil coordinate system for integrating fluid forces 

The conventional lift and pressure drag forces are then 

cos sin
a alift y eff x effF F F    (7.36) 

cos sin
a adrag x eff y effF F F    (7.37) 

In the linear potential flow formulation derived in Section 4.5.1, the variables are the 

velocity components, u and v.  For the compressible potential flow formulation derived in 

Section 4.5.2, the velocity potential function,  is also a primary variable.  The local 

pressure at the airfoil surface is not a variable in either of these formulations and is 

determined by Bernoulli’s equation 

ax

ay
L

D

V

eff i   

a

a

dy

dx

1
2 tan dy

dx
  



ax
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 2 21
0 2p p u v    (7.38) 

where 0 1p   and 2  .  For the sting length sensitivity problem, the lift sensitivity 

equation is derived by differentiating the interface conditions with respect to the 

sensitivity parameter.  Thus 

cos cos sin cos
a a a a

L L L L L
lift y eff x eff y eff tip x eff tipF F F F F          (7.39) 

where 

cos cos
a

TE TE
L L L

x u u l l

LE LE

F p d p d        (7.40) 

sin sin
a

TE TE
L L L

y u u l l

LE LE

F p d p d       (7.41) 

in terms of the fluid pressure sensitivity L p .  Note that the angle β is not a function of the 

length of the sting.  The fluid pressure sensitivity is determined by differentiating 

Bernoulli’s equation with respect to the sensitivity parameter.  Thus, in the present case, 

the sensitivity of Bernoulli’s equation is 

 2L L Lp uu vv    (7.42) 

which is in terms of both the velocity sensitivity variables and the original velocity 

variables. 

The velocity sensitivity for the steady FSI problem with a 10 deg sting tip rotation 

is plotted in Figure 7.10.  The coefficient of pressure sensitivity for the same conditions is 

plotted Figure 7.11. 
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Figure 7.10: Steady LS-CSE velocity sensitivity for NACA 0012 airfoil on a sting (10 
deg effective angle of attack) 

 

Figure 7.11: Steady LS-CSE pressure coefficient sensitivity for NACA 0012 airfoil on a 
sting (10 deg effective angle of attack) 

Table 7.5:  Airfoil on a Sting Problem Parameters 

102.1018EI   beam stiffness 

0.8185y   sting mass per unit length 

2beam

   sting fundamental freq 

3degi   angle of incidence 

5L    beam length 

1q   dynamic pressure 

1c   chord length 
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The complete coupled fluid-structure model problem boundary and initial 

conditions for the steady FSI problem are given in Table 7.3 and the corresponding 

boundary and initial conditions for the CSE problem are given in Table 7.4.  The steady 

solution to the incompressible FSI problem is depicted in Figure 7.12 for the problem 

parameters in Table 7.5.  The fluid solution is given at a p-value of 12 on a 238 element 

mesh.  The structure solution is based on a p-value of 4 on a 5 element mesh. 

 

Figure 7.12: Steady LSFEM pressure solution for NACA 0012 airfoil on a sting (tip 
rotation 10 deg) 
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Figure 7.13: Steady LSFEM pressure solution for NACA 0012 airfoil on a sting 

The analytic beam solution is given by solving the clamped beam Euler-Bernoulli 

beam equations with the analytic fluid force given by (7.29).  The analytic beam steady 

solution is 

 
3 2 3

;
6 2 3

f f fF x F L x F L
v x L

EI EI EI
    (7.43) 

 
2 2

;
2 2

f fF x F L
x L

EI EI
    (7.44) 

 ;z fM x L F x  (7.45) 

 ,y fV x L F   (7.46) 

A comparison of the analytic beam solution and the LSFEM solution is given in Figure 

7.14. 

The analytic steady equilibrium sensitivity tip rotation of the sting is determined 

in the same manner as (7.28) 

2

2

L
f fL

tip

F L F L

EI EI
    (7.47) 



 

204 

The same result could have been achieved by differentiating (7.44) evaluated at the tip 

 0x   with respect to beam length (and including the implicit dependence of fF  on L). 

 
2

,
, 2

f L f
L

F L F L
L

EI EI
    (7.48) 

Note that an upward deflection of the beam at the tip is a negative rotation (defined as the 

slope of the beam).  Equation (7.47) then gives the analytic equilibrium fluid force 

sensitivity by the same manner as (7.29) 

12 2
1 fL

f

q c F Lq c L
F

EI EI


 


 

  
 

 (7.49) 

 

Figure 7.14:  Comparison of steady, linear potential FSI solution with analytic solution 
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The analytic beam sensitivity solution can be determined by differentiating (7.43) 

through (7.46) with respect to beam length. 

 
3 2 3 2

, ;
6 2 3

L L L
f f f f f

L

F x F L x F Lx F L F L
v x L

EI EI EI EI EI
      (7.50) 

 
2 2

, ;
2 2

L L
f f f

L

F x F L F L
x L

EI EI EI
     (7.51) 

 , ; L
z L fM x L F x  (7.52) 

 , , L
y L fV x L F   (7.53) 

The LS-CSE solution and analytic sensitivities for beam length are compared in Figure 

7.15. 

 

Figure 7.15:  Steady, linear potential LS-CSE solution with analytic sensitivity 

The same approach that used for determining analytic CSE solutions to beam 

length can be used for the sensitivity to chord length and angle of incidence.  The 

equilibrium force sensitivity to chord length is 
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 
2 12 2 2 22

2 2 1 1 2c c i
f tip i tip i

c L c L c L
F c

EI EI EI

        
 

   
         

   
 (7.54) 

where 
q 

 .  As expected, (7.54) matches the result obtained by differentiating (7.29) 

with respect to c  

2 12 2 2

, 1 2 1 2 c
f c i i f

c L L c L
F c F

EI EI EI

   
 

     
           

     
 (7.55) 

The tip rotation sensitivity to chord length is 

2

2

c
fc

tip

F L

EI
   (7.56) 

which also matches the expected result obtained by differentiating (7.28). 

The equilibrium force sensitivity to angle of incidence is 

 
12

2 1 1 2i i
f tip

c L
F c c

EI
    


 

    
 

 (7.57) 

Again, this matches the result obtained by differentiating (7.29) with respect to i   

12

, 1 2 i

if f

c L
F c F

EI



 


 

   
 

 (7.58) 

The tip rotation sensitivity to angle of incidence is 

2

2

i

i f
tip

F L

EI


    (7.59) 

which also matches the expected result obtained by differentiating (7.28).  The LS-CSE 

solution (p = 12) for pressure sensitivity to angle of incidence is plotted in Figure 7.16.  

Note that the sting rotation sensitivity is depicted to scale.  The sting tip sensitivity is for 

the parameters in Table 7.5 is 3.33 radians per radian of incidence.  This corresponds to 

slightly more than 190 degs of change in tip rotation for every degree change in angle of 
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incidence.  The sting transverse deflection sensitivity (which is more than 11 units of 

length) is not plotted to scale in Figure 7.16.  The airfoil coordinate forces for the angle 

of incidence sensitivity problem are integrated along upper and lower surface as they 

were for the FSI and length sensitivity problems.  The lift sensitivity calculation for angle 

of incidence is similar to (7.39) except 

   cos cos sin 1 cos 1i i i i i

a a a alift y eff x eff y eff tip x eff tipF F F F F                (7.60) 

The integration of the pressure sensitivity and (7.60) yield a LS-CSE lift sensitivity value 

of 26.3 for a 3.33i
tip

   .  This is within 3% of the analytic sensitivity predicted by (7.57) 

of 27.2.  Note that the nonlinear Euler-Bernoulli beam 

 

 

Figure 7.16:  LS-CSE solution (p = 12) for pressure sensitivity to angle of incidence.  
(Sting rotation sensitivity is plotted to scale; sting transverse deflection sensitivity is not 
to scale). 

The effect of compressibility on the equilibrium solution for the beam is plotted in 

Figure 7.17.  The M = 0 solution is based on a LSFEM solution of the linear potential 

equations.  The M = 0.5 is from a LSFEM solution of the steady, compressible potential 
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equations.  Note that linear potential solution corrected for compressibility (not depicted 

in Figure 7.17) gives a numerical solution that is equal to the compressible potential 

solution.  The compressibility effect at 0.5 M is 15% increase in the lift curve slope.  

However, as a result of the “positive feedback” interaction between the fluid and 

structure, this results in an equilibrium force increase of almost 240% and the equivalent 

increase in tip deflection and rotation. 

 

Figure 7.17:  Comparison of steady linear potential solution and compressible potential 

solution (M = 0.5) for NACA 0012 airfoil on a sting 
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7.3.2 Typical Section and Gust Models 

Before presenting transient FSI solutions, we describe the gust model that is used 

in the next two sections as well as the unsteady typical section model that is used to 

validate the transient solutions.  The vertical gust is modeled using the usual discrete gust 

idealization of a one-minus-cosine pulse [62].  gV  is the time-dependent gust velocity 

given by 

 
 01

,max 02

2
1 cos

0 . .

g g
g g

t
V t T

V t T

o w

 


  
        




 (7.61) 

where Vg,max is the maximum amplitude of the gust, τ0 is the start of the gust, and Tg is the 

duration of the gust.  The effect of the vertical gust is to change the apparent angle of 

attack at the airfoil, Figure 7.18.  In the FSI model, this is done by changing the far field 

angle of attack.  This treatment will not capture the gust load alleviation effect that results 

from the finite time interval required for the entire airfoil to experience the gust (i.e. the 

leading edge will “see” the gust angle of attack before the trailing edge), but it is an 

acceptable simplification, particularly since we are primarily interested in sensitivity 

analysis.  If the magnitude of the vertical gust is small relative to the forward velocity of 

the airfoil, then the gust angle of attack is 

gust
g

V

U




  (7.62) 

 

Figure 7.18: Vertical gust relation 

U

gV
g
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The typical section fluid force model is based on a quasi-steady form of 

Theodorsen’s unsteady, thin-airfoil theory [19, 44, 54, 63].  The Theodorsen lift relation 

for an oscillating airfoil with pitch and plunge is 

   21 1 1
4 4 22L

c
L C U C k h U c b h U c


                

    (7.63) 

where  C k  is the complex valued Theodorsen function dependent upon the reduced 

frequency, 
2

c
k

U





 .  The first half of the right-hand side of (7.63) is known as the 

circulatory lift and the expression in brackets represents the apparent angle of attack for 

an airfoil with plunge rate, h , and pitch rate,  .  The latter half of the Theodorsen lift 

relation is an inertial load that represents the apparent mass of the volume of air that must 

be displaced by the moving airfoil.  If the effect of unsteady trailing vortices in the wake 

is neglected, then the Theodorsen lift relation can be treated as a quasi-steady model.  

This is equivalent to a reduced frequency of 0k   for which   1C k  .  This is a 

reasonable assumption for our present gust response model.   

 

Figure 7.19:  Comparison of time-sequential linear potential fluid and quasi-steady thin 
airfoil (TA) typical section solutions for an oscillating airfoil with pitch and plunge 
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A comparison of the compressibility corrected time-sequential linear potential 

fluid model described in Section 4.5.2 with the quasi-steady typical section model 

described in this section is plotted in Figure 7.19.  The incompressible solutions are a 

very close match.  The compressible solution agreement is not as exact in magnitude but 

the agreement is still reasonable.  Note that the compressibility corrections for the typical 

section model and for the potential solution are applied differently.  The compressibility 

correction for the typical section is handled through the effect on the lift curve slope in 

accordance with (7.24).  In contrast, the compressibility factor for the potential flow 

solution is applied to the derived pressure values on the surface of the airfoil before it is 

integrated to give the lift.  Additionally, there is no compressibility factor applied to the 

apparent mass term in the Theodorsen lift relation which may explain why the typical 

section model overstates the lift determined by the compressibility-corrected potential 

solution. 

7.3.3 Potential Transient FSI (Nonlinear Structure) 

The transient, nonlinear gust response is now solved using the linear potential 

fluid model.  Nonlinear, compressible potential flow is employed in the next section.  The 

nonlinear Euler-Bernoulli beam is modeled using the five degree of freedom transient 

formulation described in Section 4.6.3.  It is a total Lagrangian description in which the 

fluid forces are expressed in the undeformed coordinate system.  This is naturally done 

since the lift and drag forces, by convention perpendicular and parallel to the free stream 

velocity, are already resolved in the original, undeformed coordinate system (see Figure 

7.9).  The resolution of the airfoil coordinate forces 
axF  and 

ayF  into the lift and drag 

forces, (7.36) and (7.37), takes into account the rotation of the sting at each time step.  
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This models the effect of a follower force in that applied load is recalculated at each 

iteration to reflect the change in geometry of the structure.  This completely valid though 

nontraditional approach is somewhat unique in that the follower forces that depend on the 

deformed geometry are applied to a total Lagrangian model that is expressed relative to 

the undeformed coordinate system. 

An iterative FSI coupling method is used to sequence between the fluid and 

structure solution domains.  The fluid-structure interface conditions for the transient FSI 

problem with large deflection and geometric nonlinearities remain the same.  The lift 

from the airfoil is in equilibrium with the beam internal shear at the tip of the sting.  

Recall from nonlinear bending derivation Section 4.6.3 that Vy is the shear force 

perpendicular to the x-axis.  Thus, the fluid-structure interface conditions are 

L y tip
F V   (7.64) 

D tipF P  (7.65) 

f z tip
M M  (7.66) 

where LF  and DF  are the lift and drag forces respectively.  As usual, the appropriate 

sensitivity derivatives of the fluid-structure interface conditions yield the fluid-structure 

sensitivity equation interface relations.  So the length sensitivity interface conditions are 

L L
L y tip

F V   (7.67) 

L L
D tipF P  (7.68) 

L L
f z tip

M M  (7.69) 

Recall the assumptions from Section 4.6.3 of large lateral deflections, moderate to large 

rotations, and small axial strains.  Typical L/D ratios for airfoils are 120 or 150 to 1, so 

that the lateral force is more than two orders of magnitude greater than the axial load.  
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Furthermore, typical values for Young’s modulus of aerospace materials are 107 to 109 

depending on the units.  Thus, the axial strain will be at least 7 orders of magnitude 

smaller than the axial stress.  The current example problem fits within the assumptions of 

the nonlinear beam bending from Section 4.6.3.  The geometric nonlinearities are 

captured by the Green strain term and an updated Lagrangian description1 is not 

applicable for this problem. 

In addition to the nonlinear gust load and the compressive pressure drag load, an 

additional compressive tip load is applied to the beam which acts in phase with the gust.  

This compressive tip load is motivated by the internal load in the aft wing of a joined 

wing configuration that results from the gust loading on the forward wing [20, 38].  The 

total compressive tip load is thus given by 
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

 (7.70) 

where aP  is the peak amplitude of the compressive load.  For the results given below, aP  

is chosen so that, at peak deflection, the compressive load is equal to approximately 25% 

of the magnitude of the aerodynamic load (due to the very large magnitude of Young’s 

modulus, see above, this still results in relatively small axial strain).  As with the joined 

wing, this additional compressive load leads to a geometric softening and a potential for 

buckling of the sting.  The nonlinear effect of the compressive tip load is obvious in the 

nonlinear beam response to the 1 sec one-minus-cosine gust plotted in Figure 7.20. 

                                                 

1  The updated Lagrangian method accounts for large rigid body rotations of line elements, which produce 
no strain. 
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Taking beam length as a shape design parameter, we solve the continuous 

sensitivity system for the fluid and structure state variable sensitivities to beam length.  

The fluid potential sensitivity is given by (4.63), the nonlinear structure sensitivity by 

(4.132), and the sensitivity boundary conditions by Table 7.4.  Since the beam tip does 

not move under the domain parameterization adopted for this problem, the local and total 

derivative sensitivities at the tip of the beam are identical.  A comparison of the LS-CSE 

solution and the finite difference sensitivity for the nonlinear, transient gust response is 

plotted in Figure 7.21.  The fluid solution is based on a 12p   LSFEM solution for a 238 

element mesh.  The 4p   structure solution is solved a mesh with 5 spatial elements and 

24 time elements.  The temporal beam mesh is at least an order of magnitude finer in the 

vicinity of the gust than it is for the steady region. 
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Figure 7.20:  Nonlinear transient response for beam tip deflection, velocity, rotation, and 
internal shear to a 1 sec one-minus-cosine gust 

  

linear solution 

nonlinear solution gust  
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Figure 7.21:  Comparison of finite difference and LS-CSE solution for beam deflection, 
velocity, rotation, and internal shear sensitivity to the beam length for a 1 sec one-minus-
cosine gust 

 
Since the LS-CSE solution yields the design parameter sensitivity of all the state 

variables, single or multi-variable optimization methods requiring gradient information 

can be accomplished with respect to any of the state variables.  For example, a multi-

objective optimization to minimize the beam root bending moment while maintaining 

LS-CSE solution:  LD   

FD solution:  L   
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limits on maximum deflection and rotation of the sting is possible with the sensitivity 

data obtained from the LS-CSE solution. 

As another example of a possible use of the sensitivity solution, consider the 

extrapolation of the nonlinear beam deflection for the transient gust problem at a 

particular point in time.  For example, at t = 3, the beam tip deflection and rotation of the 

FSI solution in Figure 7.20 is close to a maximum.  The LS-CSE solution of the entire 

beam at t = 3 is given in Figure 7.22.  Note that the entire transient CSE problem does 

not have to be solved if only the sensitivity at a point in time is desired (a finite difference 

sensitivity calculation would require time marching).  The CSE boundary conditions for 

the sensitivity at t = 3 only depend on the nonlinear FSI solution at t = 3 and not on any 

of the prior history of the transient CSE system.  From a first-order Taylor series 

approximation, the extrapolated beam deflection and rotation at any point in time is  

     0 0 0; ; ;Lv x L L v x L D v x L L     (7.71) 

and 

     0 0 0; ; ;Lx L L x L D x L L        (7.72) 

where L0 is the nominal beam length and the total material sensitivity is given by (3.12).  

Explicitly, the total sensitivity for deflection is 

     0 0 , 0
0

; ; ;L
L x

x
D v x L v x L v x L

L
   (7.73) 

where Lv  is the LS-CSE solution sensitivity variable, and the spatial gradient of 

deflection in the convection term comes from the nonlinear FSI solution.  The 

extrapolated deflections and rotations at t = 3 sec for a 3% and 6% longer beam are 

calculated and compared with the actual beam deflections and rotations in Figure 7.23.  
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The agreement for a 3% longer beam is fairly close and the extrapolation for a 6% longer 

beam is noticeably more inaccurate.  This is due to the limited accuracy of the first-order 

Taylor series to a system that is not affine.  For the parameters modeled in this FSI 

system, the static margin for divergence is less than 10% for a 6% longer beam compared 

to 30% for the original beam.  This results in increasingly large deflections for relatively 

small perturbations in beam length. 

 

Figure 7.22:  Beam deflection, rotation, and internal moment sensitivity to the nonlinear 
gust response at t = 3 
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Figure 7.23:  Extrapolated and actual beam deflection and rotation to one-minus-cosine 
gust (t = 3 sec) for a 3% and 6% longer sting 

 

7.3.4 Compressible Transient FSI (Nonlinear Fluid, Nonlinear Structure) 

The nonlinear, transient gust response of the sting-mounted NACA 0012 airfoil is 

now solved for a compressible fluid.  The transient structure is modeled using the time-

space, nonlinear Euler-Bernoulli beam formulation detailed in Section 4.7.1.  This is 

coupled with the nonlinear, quasi-steady compressible potential LSFEM fluid developed 

and validated in Section 4.5.2.  The sequential coupling method for the FSI problem is 

depicted in Figure 7.24.  Note there are four loops.  Two loops for nonlinear convergence 

of the fluid and structure, a coupling loop for the FSI system, and an outer time loop for 
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the transient problem.  This numerical architecture is not the most efficient, but it was 

straightforward to implement within the existing pieces of the developed research code.  

The sensitivity system uses the same architecture framework, however the nonlinear 

iterations are not required.  The FSI loop is still necessary to converge the fluid and 

structure solution.  Additionally, time marching is not required for the sensitivity problem 

if the sensitivity is only desired at a single point in time.  Thus, as with the other example 

problems considered in this dissertation, the sensitivity problem is relatively simple to 

solve once the underlying FSI problem has been solved. 

 

Figure 7.24:  Sequential FSI coupling solution architecture for nonlinear, compressible 
fluid and nonlinear structure. 

 
A Mach number of 0.5 is used for the compressible flow in this section.  Recall 

that the primary effect of compressibility is to increase the pressure difference between 

the upper and lower surfaces of the airfoil and hence the total lift.   The effect is obvious 

in the steady FSI and CSE solutions for incompressible and compressible flow given in 

Table 7.6 (which is based on the problem parameters in Table 7.5).  Note that the tip 
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deflection and rotation more than double when compressibility is included.  Additionally, 

note that compressibility increases the tip deflection and rotation sensitivity five-fold. 

Table 7.6: Steady FSI and CSE solutions for incompressible and compressible flow 

  Incompressible Compressible 
F

S
I 

fF  1.426 3.399 

tip  10.0 deg 23.8 deg 

tipv  0.5818 1.387 

C
S

E
 

L
fF  1.901 10.8 

L
tip  17.3 deg L-1 85.3 deg L-1 

L
tipv  1.125 5.241 

 

For the compressible gust response, the amplitude of the gust is decreased relative 

to the gust model used in the previous section so that the increased lift due to 

compressibility does not result in excessive sting rotation.  This makes physical sense as 

well since the ratio of gust vertical velocity to free-stream velocity will decrease as the 

Mach number increases.  The transient gust response is plotted in Figure 7.25 for both the 

compressible and incompressible fluid.  The response for a linear beam in a compressible 

fluid is also plotted. 
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Figure 7.25:  Transient, nonlinear gust response of sting tip to one-minus-cosine gust 
(peak gust  magnitude of 10 deg) for compressible and incompressible fluid 

 
The transient tip sensitivity solution is plotted in Figure 7.26.  Note the difference 

in sensitivity for all sting variables during the course of the gust is much less than the 

difference in sensitivity between the compressible and incompressible flow solutions.  

This is not surprising.  Additionally, as noted previously, the CSE system need not be 

solved in a transient method if the sensitivity is only at a particular point in time, e.g. at 

the peak sting deflection. 

compressible flow 

gust   
incompressible flow 
compressible flow (linear sting) 
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Figure 7.26:  Transient, gust CSE of sting tip for one-minus-cosine gust (peak gust  

magnitude of 10 deg) based on compressible and incompressible FSI solution 

 
The FSI solution at initial equilibrium (t = 0 sec) and at peak deflection (t = 3.5 

sec) is given Figure 7.27.  The pressure sensitivity to beam length is plotted in Figure 

7.28.  As expected, an increase in beam length results in an increased sting deflection 

which reduces the pressure field from the stagnation point around the leading edge of the 

airfoil.  This in turn increases the lift generated by the airfoil.  The tip rotation sensitivity 

at peak deflection is more than 85 deg per unit beam length which corresponds to the tip 

rotation sensitivity evident in Figure 7.28.  Note that the sting rotation sensitivity in 

compressible flow 

gust   
incompressible flow 
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Figure 7.28 is plotted to scale but that the sting transverse deflection sensitivity is not to 

scale. 

 

Figure 7.27:  Nonlinear compressible FSI (0.5 M) pressure field and structure 
deformation to one-minus-cosine gust (t = 0 sec top, t = 3.5 sec bottom) 
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Figure 7.28:  CSE pressure sensitivity to beam length with structure deformation 
sensitivity depicted (t = 3.5 sec).  (Sting rotation sensitivity is plotted to scale; sting 
transverse deflection sensitivity is not to scale). 

 

7.4 Summary of LS-CSE for Transient FSI 

The least-squares finite element method was originally pursued for the fluid-

structure interaction problem for the reasons summarized in Section 1.2.  The LSFEM 

approach did provide a single numerical framework for both the fluid and structure 

systems in first-order form, which permitted direct coupling between the fluid and 

structure interface.  This was particularly useful in establishing the monolithic 

formulations of the FSI parent problem.  However, as also noted in the previous 
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applications of LSFEM to FSI [71, 101], the LSFEM FSI solution was plagued by 

sensitivity of the solution to the residual weights for the domain and interface functionals.  

Thus, only the first two example problems of the section were solved in monolithic form.  

The sequential iteration method used in Section 7.3 was adopted primarily to avoid the 

domain and interface weighting problem. 

Despite the relative simplicity of the FSI models used in this chapter, the coupled 

fluid-structure problems incorporated compressibility and geometric nonlinearity with 

buckling potential and exhibited rather complex transient responses.  The real 

significance of the current work, though, is in the definition of the coupled sensitivity 

system and the determination of the CSE boundary conditions.  The present work adopted 

a local derivative form for the interface.  The continuous sensitivity approach in local 

derivative form has an advantage over the CSE FSI approach of Pelletier et al. in not 

having to compute/invert the mesh Jacobian for shape variation problems which results in 

a significant computational savings for the present approach.  Additionally, our approach 

decoupled the mesh deformation problem from both the FSI analysis and sensitivity 

problems. 

Fluid-structure interaction problems are not simple to solve.  However, once a 

valid solution is obtained for the fluid-structure system and the appropriate sensitivity 

boundary conditions are derived, the sensitivity analysis is straightforward and avoids 

many of the numerical complications of the parent fluid-structure problem.  This is one of 

the great advantages of the continuous sensitivity approach: the sensitivity of even a 

complicated nonlinear, transient, coupled problem is a simple, linear, boundary value 

problem that need only be solved at a particular point in time. 
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We have demonstrated the continuous sensitivity solution to a single design 

variable for several linear, nonlinear, and transient FSI problems.  The next chapter 

examines several practical consideration for CSE including multiple design parameters, 

non-shape variation sensitivity problems, and using commercial “black box” software to 

solve the CSE problem. 
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8 Practical Considerations for CSE 

The previous chapters have theoretically posed and derived the continuous 

sensitivity equations for structural systems, fluid systems, and coupled fluid-structure 

systems.  Further, the analytic and least-squares finite element solutions of the CSEs 

demonstrate the efficacy of the continuous sensitivity method and the avoidance of 

common shortcomings of other design sensitivity methods, particularly for shape design 

problems.  The problem descriptions and solutions have been given in sufficient detail 

that they may serve as benchmarks and validation of future implementation of design 

sensitivity approaches. 

In this chapter, several topics are introduced that discuss practical considerations 

or limitations to the continuous sensitivity approach.  The treatment of problems 

involving multiple and large numbers of design variables is discussed in Section 8.1.  The 

simplicity of the CSE method for non-shape design parameters is then demonstrated in 

Section 8.2.  Adjoint methods are often employed for problems where the number of 

design variables is greater than the number of constraint or objective functions, and an 

adjoint continuous sensitivity method is derived in Section 8.3.  Perhaps most 

significantly, the author introduces the conditions on the continuous system operators that 

must be met in order to use numerical system solvers for CSE in a “black box” manner in 

Section 8.4.  This includes a proof of the equivalence of the nonlinear Newton-Raphson 

tangent stiffness matrix and sensitivity system matrix for the Galerkin method.  

Unfortunately, this equivalence does not apply to the least-squares finite element method. 
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8.1 Multiple Design Variables 

The continuous sensitivity method calculates the design sensitivity for the system 

   b bAu f  (3.1) 

by solving the CSEs associated with (3.1) for the sensitivity variables, bu  

 b b bA u f  (8.1) 

If the sensitivities to another design parameter, c, are desired, then another CSE system 

 c c cA u f  (8.2) 

must be defined and solved.  Thus, there is a CSE system, along with its domain 

parameterization (for shape problems) and boundary conditions, for each design 

parameter.  For large-scale problems with lots of design variables, the challenge, 

particularly for shape optimization, is in specifying the shape parameter domain 

definitions.  One useful approach for dealing with multiple design variables is the adjoint 

method which is described in the Section 8.3.  We first examine a conventional CSE 

approach to a two design variable example. 

Consider, as a simple but illustrative example, a two-design parameter version of 

the 1D elastic bar example from Section 3.3.  The bar is divided into two sections, as 

shown in Figure 8.1, and the lengths of each section are taken as independent design 

variables. 
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Figure 8.1: Two-section bar sensitivity example 

The field equations governing the stress and displacement are the same as given 

by (3.20-3.21), but the solution to the field equations must be integrated separately for 

each sub-domain, 1  and 2 .  This mimics the treatment of plate, skin, spar, or rib sub-

domains in a built-up structure.  In addition to the boundary conditions on 1  and 2  

given in Figure 8.1, there is a domain interface condition (continuity of displacement and 

force equilibrium) at 1 2   that requires 

   
1 2

1 1 0u L u L
 
   (8.3) 

   
1 2

1 1 1 2 0 0x xL A L A 
 

    (8.4) 

This is naturally handled in the FEM assembly of sub-structures, i.e. by directly enforcing 

the continuity of nodal variables.  It is included here explicitly to illustrate the CSE 

method over multiple sub-domains.  The problem sub-domains from Figure 8.1 are 

parameterized by 

         
1 21 1 2;   0,1  ,    ;   0,1x L x L L        X X  (8.5) 

The field equations may be directly integrated to yield the stress and displacement 

solutions 

L

  1 2xf x L L x  
1 : 0u  2 2: x P A 

P

1L

x

2L

1A 2A
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 

    

      

2 2 2
1 2 11 2

1
1 1 1 1

1 2 22
1 2 1 2 1 2

1 1 2
2 2 2

              for 0,
2 2

; ,    

      for ,
2

x

L L x Lx L L P
x L

A A A A
x L L

x L L L L x L L P
x L L L

A A A



  
   

 
        

(8.6) 

and 

 

     
23 2 2

1 2 1 2 11 2
1

1 1 1 1 1 1

3 3 2 2 2 2 2 2
1 1 2 1 2 1 1 2 2 1 2

1 2
2 2 2 2 2 2 2 2

           for 0,
6 2 2 2

; , ...
6 2 2 2 2 2 2

                                

L L x L L Lx L L P
x x x L

EA EA EA EA EA EA

x L L x L x L L L x L L x L x L L
u x L L

EA EA EA EA EA EA EA EA

  
       

 


        

 
3 2 2

1 1 1 2 1 2 1
1 1 2

2 2 1 1 1 1

  

            for ,
6 2 2

Px PL L L L L L PL
x L L L

EA EA EA EA EA EA









      


(8.7) 

For no tip load, P = 0, the analytic (local) sensitivities of stress and displacement to 

segment length 1L  are then 

 
 

 
1

1 2
1

1 1 1
,

1 2
1 1 2

2 2 2

              for 0,

  

             for ,
x L

L L x
x L

A A A
x

L L x
x L L L

A A A



    
    


 (8.8) 

and 

 

 

 
1

2
1 2

1
1 1 1

2 2 2
1 21 2 1 2

,
2 2 2 2

2 2
1 2 1 2

1 1
1 1

                                            for 0,
2

...
2 2

                                                for ,
2

L

L x L x x
x L

EA EA EA

L L xx L L L L
u x

EA EA EA EA

L L L L
x L L

EA EA

  


     


   2

  

L











(8.9) 

which is the same result obtained in (3.24-3.25) if the substitutions 1 2L L L   and 

1 2A A  are made.  Similarly, the sensitivities of stress and displacement to segment 

length 2L  are  
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 
 

 
2

1 2
1

1 1 1
,

1 2
1 1 2

2 2 2

              for 0,

  
             for ,

x L

L L x
x L

A A A
x

L L x
x L L L

A A A



    
    


 (8.10) 

and 

 
 

   
2

2
1 2

1
1 1 1

, 2 2 2
1 21 1 2 1 1 2

1 1 2
2 2 2 2 1 1

                                                       for 0,
2

   

    for ,
2 2 2

L

L x L x x
x L

EA EA EA
u x

L L xx L L L L L L
x L L L

EA EA EA EA EA EA


  

 
       

(8.11) 

which again gives the same result obtained in (3.24-3.25) with the appropriate 

substitutions. 

The corresponding CSEs are (taking the cross-sectional area as a constant in each 

segment) 

,

1
0i iL L

x x x
i

f
A

    (8.12) 

,

1
0i iL L

x xu
E

   (8.13) 

where the index 1,2i   for each segment (Einstein summation is NOT implied on the 

repeated index).  The sensitivity body forces are 

1

1, 1L
x x Lf f   (8.14) 

and 

2

2, 1L
x x Lf f   (8.15) 

Parameterize the boundaries with respect to segment lengths by 

   
1 2 1 20   ,    L L   X X  (8.16) 

The bar remains fixed at the base regardless of segment length, so the total derivative of 

displacement at the origin is zero.  Additionally, based on the parameterization of (3.39), 

the material point at the base of the bar does not move with changes in bar length, that is 
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1 , 0
iL X .  Thus, the displacement sensitivity boundary condition is zero at the origin.  

Since the load at the tip of the bar vanishes, the gradient of the axial stress is zero and the 

total derivative at the tip is also zero.  To summarize, the CSE boundary conditions are 

0    at 0iL u x   (8.17) 
0  at iL

x x L    (8.18) 

In addition, the sensitivity interface condition at 1 2   is 

   
1 2

1 1 0i iL Lu L u L
 
   (8.19) 

   
1 2

1 1 1 2 0i iL L
x xL A L A 

 
   (8.20) 

Again, this is naturally handled in the FEM assembly of sub-structures.  The explicit 

treatment here is illustrative in the integration of the field equations for the analytic 

solution to the CSEs.  Note that the CSEs, (3.37) and (3.38), for each design parameter, 

1L  and 2L  (and the boundary data, (3.40) and (3.41)) for each design parameter in this 

example are the same.  This is not surprising since the independent effect of L1 and L2 on 

the entire bar length is the same.  The influence of L1 and L2 on the sensitivity solution 

will be realized in each sub-domain segment.  Integrating the CSEs with the boundary 

data yields the CSE solutions 

 
 

 

1 2
1

1 1 1

1 2
1 1 2

2 2 2

              for 0,

  
             for ,

iL
x

L L x
x L

A A A
x

L L x
x L L L

A A A



    
    


 (8.21) 

 
 

   

2
1 2

1
1 1 1

2
1 2

1 1 2
1 1

                for 0,
2

  

             for ,
2

iL

L x L x x
x L

EA EA EA
u x

L L xx
x L L L

EA EA


  

 
   

 (8.22) 
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Note that in the integration to yield (8.22), the restriction 1 2A A  has been made explicit1 

when enforcing the integration limit at 1x L .  The CSE stress solution (8.21) matches 

exactly the analytic stress sensitivities in (8.8) and (8.10) obtained from differentiating 

the analytic solution.  If the restriction 1 2A A  is made in the analytic displacement 

sensitivity, (8.9) and (8.11), the result is 

 
 

   
1

2
1 2

1
1 1 1

, 2
1 2

1 1 2
2 2

                  for 0,
2

  

               for ,
2

L

L x L x x
x L

EA EA EA
u x

L L xx
x L L L

EA EA


  

 
   

 (8.23) 

and 

 
 

   
2

2
1 2

1
1 1 1

, 2
1 2

1 1 2
2 2

                for 0,
2

  

             for ,
2

L

L x L x x
x L

EA EA EA
u x

L L xx
x L L L

EA EA


  

 
   

 (8.24) 

respectively and the agreement with the CSE solution (8.22) is also exact. 

This two-parameter example demonstrates how the domain description and 

boundary parameterization may be more complicated for a multiple design variable CSE 

problem, but the overall approach does not differ.  In this particular example, the CSEs 

and boundary data were the same for both parameters, so that the CSE solution for each 

design variable was identical.  This is not surprising since the affect of the design 

parameters from each substructure on the overall structure was the same.  There may 

                                                 

1  The displacement CSE sensitivity determined in closed-form by integrating the strain sensitivity (which 
comes from the stress sensitivity and the constitutive relation).  The force continuity at the interface results 
in a stress discontinuity at 

1x L  if 
1 2A A .  The simplifying assumption of equal cross-sections at the 

interface is not necessary, but it does reduce the number of cases for displacement sensitivity solutions and 
simplifies  the comparison with analytic sensitivities below. 



 

235 

exist a general principle or condition for certain types of design parameters and their 

boundary parameterization that will yield computational savings in multiple design 

variable problems for built-up structures.  This is a good avenue for future research.  In 

general, this should not be expected.  However, the challenge in sensitivity analysis for 

large-scale problems is not unique to the continuous sensitivity approach.  One way to 

deal with problems involving multiple design variables is to solve an adjoint sensitivity 

system.  We explore an adjoint description of the CSEs in Section 8.3.  First however, we 

demonstrate how simple CSE implementation of non-shape design parameters is 

compared with shape design sensitivity. 

8.2 CSE for Material or Sizing Parameters 

All of the CSE derivations and examples in this dissertation have focused on 

shape parameter sensitivity, as that is the more challenging and complicated problem for 

sensitivity analysis.  The challenge is due to the variation of the domain under the 

influence of the shape parameter and leads to the important distinction, sometimes 

overlooked, between local and material sensitivities.  Much of the difficulty in applying 

the CSE method to shape sensitivity problems stems from determining the boundary 

parameterization and the appropriate boundary conditions.  The CSE approach, however, 

easily permits sensitivity analysis for non-shape design parameters, e.g. material or sizing 

parameters, since the boundary does not move and the boundary conditions are often 

homogeneous. 
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As an example, consider the sensitivity to the material property E of the two-

segment bar problem from the previous section.  The associated CSEs for stress and 

displacement are 

 
,

0E E
x i xx
A f    (8.25) 

, , 0E E
x x xE u u     (8.26) 

where the index 1,2i   for each segment.  The sensitivity boundary conditions are 

0    at 0Eu x   (8.27) 
0  at E

x x L    (8.28) 

and the continuity and equilibrium sensitivity interface conditions hold between each 

segment as before.  Direct integration readily yields the CSE solution 

  0E
x x   (8.29) 

   1Eu x u x
E


  (8.30) 

where  u x  is given by (8.7).  Since  u x  has the form 

   1
u x r x

E
  (8.31) 

where r is a polynomial function not containing any factors of E, the analytic material 

sensitivity is 

       , 2

1 1 E
Eu x r x u x u x

E E
      (8.32) 

Thus the CSE and analytic sensitivity to E both yield the same result.  As an example of a 

sizing sensitivity problem, consider the two-segment bar CSEs for cross-sectional area 

(cross-sectional area is again treated as a constant in each segment) 

, , 0i iA A
j x x ij x x xA f       (8.33) 

, 0i iA A
x xE u    (8.34) 
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where ij  is the Dirac delta function.  The index j refers to the bar segment, 1,2j  , and i 

is the cross-sectional area index.  As with the material parameter E CSE system, the 

displacement sensitivity boundary condition at the base of the bar is homogeneous.  

However, the tip stress sensitivity boundary condition becomes 

1 2
2

( )iA
x

i

P
L L

A A
 

 


 (8.35) 

Also note that the interface force equilibrium condition is a function of the cross-

sectional areas.  Differentiating the interface condition, (8.4), provides the sensitivity 

interface conditions for each segment 

     1 1

1 1 2
1 1 1 2 1

A A
x x xA L L A L  

  
   (8.36) 

     2 2

1 2 2
1 1 2 1 1

A A
x x xA L A L L  

  
   (8.37) 

Note that the  
1

1x L


 and  
2

1x L


 become nodal loads in the finite element analysis. 

The displacement sensitivity interface relation is simply 

   
1 2

1 1 0i iA Au L u L
 
   (8.38) 

We now solve for the CSEs for the sensitivity to cross-sectional area, 1A .  Direct 

integration again of the 1A  stress CSE yields 

 
   

 
1

1 1 1
1

1 1 2

1
( ) ( )          for 0,

   

0                                                        for ,

x x xA
x

x L L x L
Ax

x L L L

  


        
  

 (8.39) 

where the first of last two terms that cancel  1for 0,x L  came from the limits of 

integration and the second stemmed from the interface condition (8.36).  Since  x  has 

the form 



 

238 

 
   

   

1 1
1

2 1 1 2

1
         for 0,

             for ,

r x x L
Ax

r x x L L L


  
  

 (8.40) 

where ri is a polynomial function not containing any factors of A1, the analytic stress 

sensitivity is 

 
     

 
1

1 12
1 1,

1 1 2

1 1
=         for 0,

0                                           for ,

x

A

r x x x L
A Ax

x L L L




   
  

 (8.41) 

which matches the result for  1A
x x  in (8.39).  Thus the CSE and analytic stress 

sensitivity to A1 both yield the same result.  Direct integration also yields the CSE 

solution for A1 displacement sensitivity 

         1 1

1,
1 10 0

1 1 1x x
A A

x x Au x x dx x dx u x u x
E A E A

         (8.42) 

which matches the analytic sensitivity in the first segment. 

Similarly, in the second bar segment,  1 1 2,x L L L  , 

           1 1 1 1 1

1 1

1 1 1

1
0

x x
A A A A A

x

L L

u x u L x dx u L dx u L
E

       (8.43) 

where the integration constant comes from the sensitivity interface displacement 

condition.  The analytic sensitivity to A1 in the second bar segment,  1 1 2,x L L L  , is 

     1

1

3 2 2
1 1 2 1 2 1

, 1 1
1 1 1 1 1 1

1 1
  = 

6 2 2
A

A

L L L L L PL
u x u L u L

A EA EA EA EA A

 
       

 
 (8.44) 

which is obvious by substituting L1 into (8.7) and is again the expected result.  Thus the 

CSE and analytic sensitivity to A1 also yield the same solution. 

Because the CSE boundary conditions for non-shape parameter sensitivity 

problems are typically homogeneous, the CSE solution to material and sizing parameter 
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problems is generally simple.  The straightforward complications in the examples of this 

section stemmed from the multiple design variables and partitioned domains, and not 

from the CSE system itself.  One approach for dealing with multiple design variables is 

the adjoint method which is explored in the next section. 

8.3 Adjoint CSE 

The adjoint method is a common approach to solving design sensitivity problems.  

For problems with many design variables and load conditions and few active constraints, 

the adjoint method is generally a more efficient means to obtain the desired sensitivities 

than direct differentiation.  Adjoint methods for discrete sensitivity analysis are well 

established and documented in structural design texts [34, 59, 60] and several interesting 

applications have been developed for fluid and aerodynamic optimization problems [66, 

67, 90, 109, 110].  See Section 2.3.3 for a more detailed review of the application of 

adjoint methods to aeroelastic problems. 

Although the adjoint approach is typically employed as a discrete sensitivity 

method, the same rationale and benefits that motivated the development of continuous 

sensitivity analysis apply equally to direct and adjoint differentiation.  Jameson et al. 

have recently developed a continuous adjoint method for unsteady aerodynamic problems 

[68, 87] which is derived starting from the fluid system residual equations.  We now 

derive a continuous adjoint method that begins from the continuous sensitivity equations 

instead of the original parent equations. 

Returning again to the continuous system 

   b bAu f  (3.1) 
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Consider an objective or constraint function,   ,h b bu , of the problem unknowns and 

the design parameter, b.  The sensitivity of h with respect to b is desired.  Following the 

derivation approach of [59], the sensitivity of h to b is 

T
Dh h h

Db b b

         
u

u
 (8.45) 

where the components of the 
h 

  u
 vector consist of derivatives of h with respect to each 

of the iu  components of u.  Adding the product of a Lagrange multiplier and the (linear) 

continuous sensitivity system (3.14) to (8.45) yields  

 , , ,
T

b b b

Dh h h

Db b b

  
     
  

u
λ f Au A u

u
 (8.46) 

Note that a linear form for the system (3.1) is assumed in (8.46).  In this case, the ,bA  

term captures explicit dependence of the operator A on b.  Implicit dependence of A on b 

due to nonlinearities is not considered in the adjoint derivation (but is considered in the 

CSE solutions presented in Section 8.4).  Regrouping the u,b CSE unknowns in (8.46)

together yields 

 , , ,
T T

b b b

Dh h h

Db b

          
λ A u λ f A u

u
 (8.47) 

The second term on the right-hand side can be eliminated by solving the adjoint 

continuous sensitivity problem 

h



Aλ
u

 (8.48) 

where λ is the adjoint vector.  Note that in the adjoint CSE method delivers the sensitivity 

Dh

Db
, but the sensitivity variables, u,b, are never calculated.  Thus, the CSE problem need 
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not be solved.  This is an obvious disadvantage if the u,b sensitivity is desired or required 

in addition to the objective/constraint function sensitivity, 
Dh

Db
. 

8.4 Nonlinear Analysis and “Black-box” implementation of CSE 

When the parent problem is a linear problem, the CSE problem is easily solved 

using the same numerical method used to solve the original problem, since the systems 

are identical except for their boundary conditions.  However, many problems of interest 

are nonlinear in nature, in which case the sensitivity system takes a different form from 

the parent system.  However, it is still possible in some cases to use the nonlinear solver 

as a “black-box” (i.e., without access to the source code for modification) to solve the 

CSE system.  Two common iterative approaches are used to solve nonlinear problems via 

the finite element method: direct substitution (also known as the Picard method of 

successive substitution) and the Newton-Raphson method.  Common variants of the 

Newton-Raphson method include the modified Newton-Raphson method and the secant 

or arc-length method. 

This section explores using common outputs from nonlinear “black-box” solvers 

based on the Newton-Raphson and the direct substitution methods to generate the 

stiffness matrix for the linear CSE problem.  This avoids the computational cost of 

generating and assembling the system for the CSE problem, although the CSE boundary 

conditions must still be formulated.  Both LSFEM and conventional Galerkin weighted 

residual methods are considered.  Restrictions on the nature of the problem and the 

solution method are stated.  This is not an original idea; the literature clearly states that it 

can be done, but without explanation of how to do so and without any warnings on the 
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conditions required of the equations or numerical solvers.  The recognition and 

description of the conditions under which numerical solvers can be used in a “black box” 

manner should allow a more widespread adoption of the CSE method. 

8.4.1 Newton-Raphson Nonlinear Iteration for CSE 

The Newton-Raphson (N-R) method for FEM is based on Newton’s method for 

extracting solutions to polynomials.  It is generally derived with the implicit assumption 

of a Galerkin-derived finite element model.  We derive it based on Reddy’s [106] 

approach but for the more general case that includes least-squares finite element models. 

The nonlinear finite element model is 

        K U U F U  (8.49) 

where in general both the stiffness matrix, K, and load vector, F, may be functions of the 

finite element solution, U.  The residual vector of (8.49) is 

            R U K U U F U  (8.50) 

which equals zero at the exact solution, Û .  Expanding the residual vector in a first-order 

Taylor series about the finite element solution from the (r-1)th iteration and evaluating it 

at the (unknown) exact solution yields 

      
         

   
1 1

11 1ˆ ˆ ... 0

r r

rr r 
 

                       

R R
R U R U U U R U U

U U
 (8.51) 

Defining the tangent stiffness matrix 

   
 

1

1

r

r
T



  
    

R
K U

U
 (8.52) 

yields a means of solving for the increment from Ur-1 to achieve the desired solution Û  

by 
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                1 11 1 1 1r r r r
T T           U K R U K K U U F U  (8.53) 

The (improved) approximate solution at the next iteration is then 

     1r r  U U U  (8.54) 

Note that the tangent stiffness matrix, KT, is not the same as the system stiffness matrix, 

K.  In a single degree of freedom case, the tangent stiffness is the slope at a point on the 

load-displacement curve, whereas the secant matrix is the slope of the line from the 

origin (or the prior estimate) to the same point.  The tangent stiffness matrix can be 

generated at the element level and assembled in the same manner as the system stiffness 

matrix.  The component form of (8.52) is 

1 1
ij

n n
i im i

T im m i m ij
m mj j j j

R K F
K K u F u K

u u u u 

              
   (8.55) 

The distinction between KT and K is obvious from (8.55) where imK  are the components 

of K.  For Galerkin-based finite element models, the i

j

F

u




 term vanishes if f is not an 

explicit function of u.  This is typically true, since the Galerkin F is generated by the 

inner product  , f .  Thus, the last term in (8.55) is typically omitted from most 

definitions of the tangent stiffness matrix.  In situations for which  F u  is an explicit 

function of u, it is permissible to redefine  K u  to absorb the dependence of u.  

Nevertheless, even in this case, the non-zero i

j

F

u




 term will reappear from , im

j

K

u




 so it is 

more straightforward to include it in tangent stiffness definition (8.55).  In contrast to 

Galerkin-based finite element models, for which typically 0i

j

F

u





, the finite element 
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load vector in a least-squares finite element model of the nonlinear system,  A A u , 

will be a function of u (even if f is not an explicit function of u).  This is because the 

LSFEM load vector is generated by the inner product  ,Av f  and A is a nonlinear 

function of u.  Thus, for LSFEM, 0i

j

F

u





.  Omitting the i

j

F

u




 term from the definition of 

the tangent stiffness matrix significantly slows the convergence of the N-R method 

applied to LSFEM. 

Previous researchers [24] have noted that if the Newton-Raphson method is used, 

then the linear sensitivity system is available in factored form and the final iteration of 

the tangent stiffness matrix will yield the desired sensitivity matrix.  Although they 

provide no details, this appears to suggest a shortcut to the CSE stiffness matrix without 

having to generate and assemble the matrix from the CSE system.  Though this appears to 

work for the Galerkin method, it is not generally true for other weighted-residual forms 

as the two examples that follow demonstrate. 

These examples highlight an unanticipated but significant shortcoming of the 

LSFEM approach to nonlinear analysis.  Although the N-R method has a smaller region 

of convergence, it is generally more efficient than the direct substitution method explored 

in Section 8.4.2, and thus is one of the most common iterative solution strategies for 

solving nonlinear systems.  There is a computational shortcut for the sensitivity of a 

nonlinear system from a Galerkin finite element solution, since the final tangent stiffness 

matrix yields the sensitivity system stiffness matrix without additional computation.  The 

sensitivity system must still be solved for the appropriate sensitivity boundary data, but 

the computational expense of generating and assembling the stiffness matrix from the 
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sensitivity system is avoided.  A LSFEM solution strategy precludes this computational 

shortcut, as demonstrated in the following two examples. 

8.4.1.1. First-order, univariate example 

Consider the nonlinear, first-order, single degree of freedom system 

 , 2xu uu f x x    (8.56) 

on the interval  ,x a b  with boundary data 

  1u b   (8.57) 

For a=0 and b=1, the solution is 

 u x x  (8.58) 

Parameterize the domain as   ;  
x

x b
b

    
 

X  and take b as a domain shape 

parameter.  The sensitivity system associated with (8.56) is 

    , , ,1 0b b
x x bu u u u f x     (8.59) 

and the sensitivity boundary condition is 

  , 1 1 0b
b bu b D u u     X  (8.60) 

The solution to the sensitivity system is then 

  0bu x   (8.61) 
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A single linear element is sufficient to represent the solution to both the parent and the 

sensitivity problem.  The nonlinear stiffness matrix for the Galerkin finite element model 

of the parent system is1 

1 1 1 1 1 1
1 2 1 23 3 6 6 3 6

1 1 1 4 1 1
1 2 1 26 6 3 3 6 3

u u u u

u u u u

    
      

K  (8.62) 

and the tangent stiffness matrix is 

1 2 1 1 1 1
1 2 1 23 3 6 6 6 3

1 1 1 4 1 2
1 2 1 26 3 6 3 6 3

T

u u u u

u u u u

    
      

K  (8.63) 

The CSE stiffness matrix for the Galerkin FEM is 

   
   

1 1 1 1 1 1 1 1
2 1 1 2 2 1 1 23 3 3 6 6 6 3 6

1 1 1 1 4 1 1 1
2 1 1 2 2 1 1 26 6 3 6 3 3 6 3

b
T

u u u u u u u u

u u u u u u u u

        
          

K K  (8.64) 

Thus, the tangent stiffness and CSE stiffness matrices are the same for the Galerkin FEM 

in this example.  The numerical tangent stiffness and CSE stiffness matrices evaluated at 

the finite element solution  0,1
Tu  are 

1 1
2 2

0 2T

 
  
 

K  (8.65) 

and 

1 1
2 2

0 2
b  

  
 

K  (8.66) 

which makes the equality more obvious.   

                                                 

1 The weak enforcement of boundary condition (8.57) is included in the generation of (8.62)-(8.64).  

Specifically,      K K K  where 
0 0

0 1

 
  
 

K  and 
0

1

 
  
 

G .  Including the weak boundary 

condition has no effect on the conclusion for either the Galerkin or LSFEM method. 
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Turning now to the LSFEM model, the LSFEM nonlinear stiffness matrix for the 

parent system is 

1 1
2 23 3 1 1 1 1 1 1

1 2 1 1 2 26 6 6 3 3 3

1 1 1
2 2 23 3 31 1 1 1 1 1

1

3 2

2 1 1 2 26 6 6 3

3
2 1 1 1

1 2

2 3 3
2 2 1

1 2
3 3

1

1
1

u u
u u

u u

u u

u u u

u u

u u u u

u
u u u u u u

  
     

     
  

  
 




 
  

  

K (8.67) 

and the tangent stiffness matrix is (from (8.55) which includes the i

j

F

u




 term) 

2 2 54 2 1 1 1
1 1 2 1 2 23 3 6 6 6 3

2 21 1 1 1 2 4
1 1 2 1 2 23 6 6 6 3 3

T

u u u u u u

u u u u u u

   
       








 


K  (8.68) 

It is obvious from a comparison of the off diagonal components 
12TK and 

21TK that the 

tangent stiffness matrix based on the LSFEM-generated parent stiffness matrix is not 

symmetric.  Recall that a LSFEM system is always symmetric, so (8.68) cannot equal the 

LSFEM CSE stiffness matrix as was true for the Galerkin model.  The LSFEM CSE 

stiffness matrix is 

          
 
 

31 1 1 1 1
1 2 1 2 1 2 1 1 2 1 1 23 3 6 2 2

3 31 1
1 2 13 3

1

2

2

3
21 1 2 2 1 2 1 2 2

1

1 2 2 1 2

1 2

1 2 2

b

u u u u u u u u u u u u

u u u
sym

u u

u u                 
 

    
   




K

(8.69) 

Comparison of (8.68) and (8.69) shows that the tangent stiffness cannot yield the LSFEM 

CSE matrix.  The numerical LSFEM tangent stiffness and CSE stiffness matrices 

evaluated at the finite element solution  0,1
Tu  are 

1 1
2 2

0 3T

 
  
 

K  (8.70) 

and 

1 0

0 4
b

T

 
  
 

K K  (8.71) 
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This counterexample is sufficient to show that the computational shortcut of the Galerkin 

approach is not permitted in a LSFEM approach.  This will also be obvious in the proof 

of the Galerkin equivalence that appears in Section 8.4.1.3. 

8.4.1.2. Second-order example 

As a higher-order example, consider the second-order nonlinear problem from 

[106] Example 3.4.1. 

0 1
d du

u f
dx dx

     
 

 (8.72) 

on the interval  0,x b  with boundary data 

   ,0 1 ,    0 0xu u   (8.73) 

The solution is 

  21u x x   (8.74) 

The first-order form of (8.72) with ,xv u  is 

2
, 1xv uv   (8.75) 

which in matrix-operator form is 

,

,

0 1 1 0 0

0 0 1
x

x

uu

v v u v

                  
         

 (8.76) 

Taking b as a domain shape parameter, the sensitivity system associated with (8.72) is 

, , , ,2 0b b b
xx x x xxu u u u u u    (8.77) 

which has the first-order matrix-operator form 

,

, .

0 1 1 0 0

2 0 0

bb
x

b b
x x

uu

v v uv v

                    
           

 (8.78) 
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We again compare the Galerkin tangent stiffness matrix for a single linear element.  The 

nonlinear stiffness matrix for the Galerkin finite element model of the parent system is 

1 1 1 1
2 3 2 6

1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 43 4 6 12 3 12 6 12

1 1 1 1
2 6 2 3

1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 46 12 3 12 6 12 3 4

0 0

0 0

u u u u u u u u

u u u u u u u u

 
        
 
 

        

K  (8.79) 

and the tangent stiffness matrix is 

1 1 1 1
2 3 2 6

1 1 1 1 1 1 1 1 1 1 1 1
2 4 1 2 3 4 2 4 1 2 3 43 3 3 2 6 6 6 6 3 6 6 6

1 1 1 1
2 6 2 3

1 1 1 1 1 1 1 1 1 1 1 1
2 4 1 2 3 4 2 4 1 2 3 46 6 6 6 3 6 3 3 6 6 3 2

T

u u u u u u u u u u u u

u u u u u u u u u u u u

 
            
 
 
            

K  (8.80) 

The CSE stiffness matrix for the Galerkin FEM is 

3 1 1 1
2 3 2 6

1 1 1 1 1 1 1 1 1 1
, 1 2 3 4 , 1 2 3 43 3 2 6 6 6 3 6 6 6

1 1 1 1
2 6 2 3

1 1 1 1 1 1 1 1 1 1
, 1 2 3 4 , 1 2 3 46 6 6 3 6 3 6 6 3 2

x xb

x x

v u u u u v u u u u

v u u u u v u u u u

 
        
 
 

        

K  (8.81) 

which is identical to the tangent stiffness matrix (8.80) once the finite element 

approximation , 2 4xv u u    is made for the gradient of the solution of (8.76). 

We have demonstrated the equivalence of the Galerkin tangent stiffness and CSE 

systems in two example problems.  We now prove that this equivalence is always exact 

for Galerkin and is not permitted by LSFEM.  Though the equivalence has been 

employed in several prior works, to the author’s knowledge no proof of equivalence has 

appeared in the literature. 
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8.4.1.3. Equivalence of Galerkin Tangent Stiffness and CSE Systems 

We now prove that the Galerkin-derived tangent stiffness matrix at the final 

converged solution yields the desired CSE system stiffness matrix.  Recall that the first-

order sensitivity system may be written as 

, ,b b b
       
A A

u A u f u
u

 (3.14) 

where i ji
i

u
u       

A A
u

u
.  The Galerkin stiffness matrix for the sensitivity system in 

operator form is then 
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 (8.82) 

To avoid confusion between the vector index and the indexed components of the finite 

element approximation used below, we consider the nonlinear dependence of each 

component of the vector u independently.  This is permitted by recognizing from (3.12) 

that the nonlinear effect of each component of u is the superposition of each component.  

Denote the nonlinear component of interest by u* (we intentionally avoid an index since 

we reserve the index notation for components of the FEM approximation in the next 

step).  This is no way limits the proof since each components of u may be considered 

independently which is obvious when the CSE is written in the form of (3.13).  We now 

write the component definition of the Galerkin sensitivity matrix as 

*
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b
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u
  
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or 
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The first term on the right-hand side is the definition of the Galerkin stiffness matrix for 

the original system.  Introducing the finite element approximation for the continuous 

function u* 

*
i iu u  (8.85) 

where summation on the repeated index is implied.  Solving the finite element 

approximation for the uj coefficient yields 

* 1
j i i

i jj j

u
u u

  

    (8.86) 

Differentiating (8.86) with respect to the uj coefficient and noting that the shape functions 

i  are not functions of the coefficients and that the coefficients are independent are so 

that 0i ju u    yields 
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Thus 
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which yields the identity 
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            (8.89) 

where ju   can be pulled out of the integral because it is not a function of the domain.  

With (8.89), the Galerkin sensitivity system stiffness matrix (8.84) becomes 

 
e

b
ij ij i m m

j

K K u d
u

 



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where the finite element approximation has been used for i jiu  .  Regrouping yields 
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ij ij
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b im
ij i m m m
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which is recognized as the component definition of the tangent stiffness matrix (8.55) for 

the original system at the converged solution.  Thus, for a Galerkin finite element 

formulation, the nonlinear system tangent stiffness matrix (linearized about the system 

solution) is identical to the stiffness matrix for the sensitivity system. 

A similar analysis for the LSFEM yields 
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or 
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   

   
 (8.93) 

which is obviously not equal to the N-R tangent stiffness matrix.  It is the result of the 

product rule and the presence of the second set of operators in the integrand which break 

the parallel with the definition of the tangent stiffness matrix (8.55) enjoyed by the 

Galerkin form. 

The Newton-Raphson method is probably the most widely used iterative method 

for nonlinear problems, although it is not the simplest.  The direct substitution method is 

simpler than the Newton-Raphson method and often has a wider region of convergence, 

though it generally does not converge as quickly as the Newton-Raphson method.  More 

importantly for LSFEM, however, is that whereas the Newton-Raphson solution does not 

permit a computational shortcut for CSE of nonlinear problems, the direct-substitution 

method does under certain conditions.  These conditions apply equally to LSFEM and 

Galerkin solutions and are the subject of the next section. 
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8.4.2 Direct Substitution Nonlinear Iteration for CSE 

In the direct substitution iterative method (also known as the Picard method of 

successive substitution), the solution from an initial estimate is used to form the stiffness 

matrix.  With each iteration, the prior solution is used as an estimate for the solution.  

Thus the nth iterative finite element model is 

      1 1n n n    K u u F u  (8.94) 

Often, the method will separate the stiffness matrix into a stationary component K0 and 

an update component KN  so that 

   1 1
0

n n
N

        K u K K u  (8.95) 

Then the nth iterative finite element model can take the form 

         1 1 1
0

n n n n
N

      K u F u K u u  (8.96) 

For a nonlinear system, bK K .  But if 

0 0
bK K  (8.97) 

and the update takes the form 

    b
N N rK u K u  (8.98) 

where  r   is some function, then 

         0
b b b

N r        K u K K u u F u  (8.99) 

and the direct substitution “black box” solver can be used to solve the CSE system, 

provided that the solver allows for an initial estimate in the form of a function of the 

solution,  r  .  Before establishing sufficient conditions for the satisfaction of (8.97) and 

(8.98), we illustrate the process with a series of example problems. 

Consider the nonlinear Euler-Bernoulli beam introduced in Chapter 4 
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32 2 2

2 2 2 2y y

v v EA v
EI p

t x x x x


                      
 (8.100) 

The operator matrices for the vector  , , , ,
T

z yv M V vu   are 
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The a32 component contains the nonlinear term for the system.  For the beam problem, 

2
32 2

EA
a   (8.102) 

For the sensitivity problem 

23
32 2a EA  (8.103) 

In this example, the update matrix for the parent beam problem and the sensitivity 

problem are related by 

   3b
N N K K  (8.104) 

That is, if 3  is substituted into the nonlinear update to the stiffness matrix as an initial 

guess, then the nonlinear beam solver will solve the sensitivity problem.  Of course, the 

sensitivity boundary conditions must also be specified.  Note that only the initial iteration 

of the direct substitution method is performed in order to solve the sensitivity problem. 

As another example, consider the parent system 

 21
,2 xu u f x   (8.105) 

and the associated sensitivity system 

   , ,
b b

x bu u u f x   (8.106) 

The parent operator “matrices” are 
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1
0 12  ,    1A u A   (8.107) 

and the sensitivity system operator matrices are 

0 1 ,    1b A u A   (8.108) 

The LSFEM model (p=1) for a single element approximation of (8.105) is 

2 21 1 1
12 2 24

0 2 21 1 1
24 12 2

1 1
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1 1 N

u u u
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u u u
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        

 (8.109) 

and the LSFEM sensitivity model is 
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 (8.110) 

Thus, substituting 2u  into the parent problem update matrix in place of u yields the 

desired sensitivity system. 

Consider now, as a final counterexample, the parent and sensitivity system posed 

in (8.56) and (8.59) respectively.  The parent operator matrices are 

0 11 ,         A A u   (8.111) 

and the sensitivity system operator matrices are 

 0 , 11  ,    b
xA u A u    (8.112) 

The LSFEM model (p=1) for a single element approximation of (8.56) is 
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 (8.113) 

and the LSFEM sensitivity model is 
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(8.114) 
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In this case, there is no substitution function for the parent update that will yield the 

sensitivity system,     b
N NK u K r u . 

We are now prepared to state a sufficient condition on the system operators to use 

the direct substitution solver as a “black box” for the sensitivity system: 

Condition 8.1: If the differential operator matrices for the nonlinear parent 

system are nonlinear only in the operator component upon which they operate, 

then there exists a substitution function such that     b
N N rK u K u . 

In the general case, the parent problem can be nonlinear in a primary variable or 

the spatial or temporal derivatives of the primary variable.  Thus, the general parent 

operator system has the form 

         0 , 1 , , 2 , , , ,, , ; , , ; , , ; , , ; , ;t t x t y t t tb b b b b            A u u u u A u u u u A u u u u A u u u u f x u (8.115) 

Equation (8.115) is differentiated with respect to the parameter b to yield the sensitivity 

system.  With respect to the general nonlinear form (8.115), we state three corollaries that 

follow from Condition 8.1: 

Corollary 8.1a: The requirement  0 0 ;bA A u  only, implies that  

    0 0; ;b b r bA u A u  (8.116) 

Corollary 8.1b: The requirement  , ;i i i bA A u  only, implies that  

    , ,; ;b
i i i ib r bA u A u  (8.117) 

where i = 1 … dim.   

Corollary 8.1c: The requirement  , ;t t t bA A u  only, implies that  

    , ,; ;b
t t t tb r bA u A u  (8.118) 
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Note that these sufficient conditions for the existence of the function  r   apply to both 

LSFEM and Galerkin finite element models. 

8.4.3 Summary of Nonlinear Black-Box Solver Strategies for CSE 

As shown in Section 8.4.1, a major limitation of the least-squares finite element 

method for continuous sensitivity analysis of nonlinear problems is that it usually 

precludes using the tangent stiffness matrix from the Newton-Raphson method in lieu of 

generating the stiffness matrix for the CSE system.  This is possible in Galerkin-based 

FEM and may contribute to a significant computational savings.  No such restrictions 

apply to either the LSFEM or Galerkin finite element models when using the direct 

substitution method, however, the problem must meet the requirements of Condition 8.1.  

Additionally, the “black box” solver must permit the user to bootstrap a function of the 

initial approximation variables and to terminate the solver after a single iteration. 

In either case, using a “black box” nonlinear solver to execute a single iteration 

and solve the linear sensitivity system should yield computational savings, since the 

sensitivity system does not have to be generated and assembled from the sensitivity 

equations.  The sensitivity boundary conditions still must be calculated using the solution 

to the parent problem. 

Finally, we recall that using a nonlinear solver in this manner is not an original 

idea.  Some [59] have claimed, without detail, that it could be done.  Other researchers 

[24] have used the technique, but without warning of the limits to the numerical 

formulation or equation conditions that must be met.  The detail of this section is the only 

known rigorous treatment of the subject.  The recognition and description of the 
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conditions under which numerical solvers can be used in a “black box” manner should 

allow a more widespread adoption of the CSE method. 
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9 Conclusions & Future Work 

With the notable exception of the work by a few key progenitors, specifically 

Borggaard and Burns, and then Pelletier and his students, the continuous sensitivity 

method has largely been ignored relative to other methods for obtaining design gradient 

information.  This is a shame, particularly with respect to shape variation problems, for 

the continuous sensitivity analysis approach is a powerful method and is relatively simple 

to implement within the same numerical mesh and framework of the underlying analysis 

problem.  Some of the lack of widespread adoption of continuous sensitivity analysis is 

probably due to the early prominence of other methods, e.g. discrete sensitivity.  Another 

factor may be that the derivation of the continuous sensitivity equations for the most 

general cases in many of the textbooks tends to obscure the simplicity of the continuous 

sensitivity system when posed in local derivative form.  This is true of the original 

formulations for elasticity systems [39] as well as the more recent fluid-structure 

sensitivity work by Pelletier et al. which mixes local and total derivative forms. 

The first of two major contributions of the present work is the recognition that the 

system is simpler to pose in local derivative form.  The local sensitivity may then be 

converted to total (material) sensitivity form as needed.  The second contribution is the 

detailed explanation of how to employ the same code for continuous sensitivity analysis 

as was used to solve the original analytical problem.  Both of these significant 

contributions, as well as several minor contributions, are explained in further detail in 

Section 9.3.  First, we outline the general conclusions regarding the least-squares 

continuous sensitivity method in Section 9.1, and then summarize the details from the 

earlier chapters in Section 9.2.  In Section 1), the author recommends areas for future 
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research.  The final word on CSE for FSI applications is discussed in Section 9.5.  First, 

though, we outline the general conclusion of the work. 

9.1 General Conclusions 

Although continuous sensitivity analysis can be widely applied to both shape and 

non-shape variation problems, it is particularly suited for shape variation problems since 

it avoids the computationally expensive mesh sensitivity problems of other sensitivity 

methods.  For the reasons given below (Section 9.3), the continuous sensitivity equations 

for shape variation applications are best posed in local derivative form.  Structural 

optimization will generally be done with respect to material coordinates for which 

material gradients are desired, but it is straightforward to transform the local derivative 

solution from the CSE problem into the desired total (material) sensitivities. 

One of the advantages to continuous sensitivity is that it permits the solution of 

the sensitivity problem using the same numerical mesh and method as was used to solve 

the original system.  The least-squares finite element method was originally pursued for 

the fluid-structure interaction problem for the reasons summarized in Section 1.2.  The 

LSFEM approach did permit a single numerical framework for both the fluid and 

structure systems in first-order form.  The first-order form was attractive because it 

permitted direct coupling between the fluid and structure and because the accuracy of all 

variables was then of the same order.  This proved useful in establishing the boundary 

conditions for the sensitivity system which are based on the solution to the parent FSI 

problem.  However, the LSFEM FSI solution was plagued by dependence of the solution 

to the residual weights for the domain and interface functionals.  More devastating to the 
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LS-CSE method, however, is that it precludes a significant computational advantage for 

assembly of the sensitivity system when the Newton-Raphson method is used to solve a 

nonlinear system.  This was explained in Section 8.4.1 and is summarized in Section 9.3. 

9.2 Summary of Work 

First-order formulations for a range of elasticity and fluid models were derived 

and posed in a form amenable to solution by the least-squares finite element method.  The 

elasticity and fluid models included both linear and nonlinear, and steady and nonsteady 

problems and were validated against published or known analytic solutions.  The elastic 

structure and fluid models were then coupled in a series of representative fluid-structure 

interaction problems.  The FSI problems also included linear, nonlinear, steady, and 

transient problems.  All problems were solved using a LSFEM model that was 

implemented using an original, higher-order p-element method for 1D and 2D-

quadrilateral elements in MATLAB®.   

The continuous sensitivity equations for the each of the elastic, fluid, and fluid-

structure problems explored in Chapters 5-7, were posed and solved using the same 

computational mesh and solution.  A key distinction between the local and total 

derivative forms of the sensitivity equations was introduced.  This distinction, though 

present in the work of other researchers, is usually obscure at best and at times is ignored 

or neglected altogether, producing erroneous solutions.  The continuous sensitivity 

system of equations and sensitivity boundary conditions were derived and solved in local 

derivative form, which was shown to be superior for several applications.  The local 

derivative solution was then transformed to a total derivative solution suitable for 
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optimization at material points.  This process was demonstrated in the optimization of an 

elasticity problem. 

In the present work, the continuous sensitivity systems were solved using the 

same high-order least-squares finite element method that was used to solve the 

underlying parent problems.  The LSFEM approach is attractive in that it allows a stable 

mixed element, a better approximation of dual or secondary variable gradients compared 

to the weak-form Galerkin formulations, an inherent error estimate, and flexibility in 

norm choice.  The improved accuracy of the dual variable gradients inherent in the first-

order mixed formulation is particularly important, because the gradients of the underlying 

solution are used to pose the boundary conditions for the sensitivity system.  The higher-

order p-element implementation also permitted a straightforward means to achieve a 

refined solution without needing a refined mesh.  Thus, both the parent and sensitivity 

systems can be solved to any desired level of convergence using a single computational 

mesh.  This is particularly important since, as observed in the literature, the CSE solution 

often requires finer resolution than the original system. 

The fluid-structure models used in the current work were relatively simple 

models.  Despite the simplicity of the models, the coupled fluid-structure system with a 

structural system incorporating geometric nonlinearity and buckling potential exhibits 

rather complex transient responses.  The real significance of the current work, though, is 

in the definition of the coupled sensitivity system and the determination of the CSE 

boundary conditions.  The nonlinear effect of the dynamic response for the underlying 

fluid-structure system was also demonstrated in the solution to the linear sensitivity 

system. 
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Overall, the least-squares continuous sensitivity method appears to be a promising 

option for the optimization of transient, nonlinear, fluid-structure optimization problems.  

There is no need to determine the proper step size as is required in finite difference 

methods—a requirement that can become problematic in multivariate optimization 

problems—and there is no need to compute the mesh sensitivity as is required in discrete 

sensitivity methods.  Additionally, since the CSEs are always linear, there is a potential 

computational savings in not having to calculate multiple solutions to the underlying 

nonlinear system.  Furthermore, finite difference and traditional discrete methods can 

yield only the total derivative, whereas the continuous sensitivity method yields both 

local and total derivatives.  The continuous sensitivity approach in local derivative form 

has an advantage over mixed-derivative form of the CSE FSI approach of Pelletier et al. 

in not having to compute/invert the mesh Jacobian for shape variation problems.  This 

can represent a significant computational savings for the CSE approach in local 

derivative form. 

9.3 Summary of Significant Results and Contributions 

This dissertation makes two significant contributions to the state of knowledge for 

the application of continuous sensitivity methods.  Although they were presented in 

support of the sensitivity analysis for fluid-structure interaction problems, they are more 

general and more fundamental than the application to FSI. 

The first of two major contributions is the explicit distinction between local and 

total derivatives for shape variation problems.  The distinction is present in previous 

works, but it is obscure and at times overlooked by other researchers.  The more 
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significant aspect of this contribution is the recognition that the sensitivity system was 

simpler to pose in local derivative form than in total (material) derivative form.  This is 

explained in detail in Chapter 3.  The advantage of writing the CSE system in local 

derivative form is that only the boundary parameterization for shape variation problems 

need be described, which avoids having to define a parameterization or transformation 

function for the entire domain.  Thus, the CSE problem is generally simpler to pose and 

solve in term of local sensitivities and to then convert the result to total derivatives for 

optimization. 

The second major contribution is the detailed explanation of how to employ the 

same numerical method for continuous sensitivity analysis as was used to solve the 

original analytical problem.  This may be done in a “black box” manner without access to 

the source code and was explained in detail in Chapter 8.  Previous researchers have 

stated, without proof or explanation, that it is possible to use the same code to solve both 

the analysis and sensitivity problems.  However, this is generally not true unless certain 

conditions to the equation forms are satisfied and is further restricted by the form of the 

numerical solver.  For example, a Galerkin-based finite element model permits use of the 

final Newton-Raphson tangent stiffness matrix to solve the sensitivity system, but other 

weighted-residual finite element models, e.g. LSFEM, do not.  The recognition and 

description of the conditions under which numerical solvers can be used in a “black box” 

manner should allow a more widespread adoption of the CSE method.  The difficulty in 

sensitivity analysis for FSI applications lies not in the sensitivity but in the analysis 

problem, and there are several commercial codes that perform FSI analysis.  Being able 
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to use these commercial codes to also solve the sensitivity system is a potent possibility 

for continuous sensitivity analysis of fluid-structure interaction problems. 

In addition to these two significant contributions, several minor, original 

contributions have also been advanced.  Each of these was explained in more detail in 

earlier chapters: 

1) First sensitivity calculation for a nonlinear FSI, transient gust response (Chapter 7) 

2) Explicit explanation that local sensitivities for shape variation problems are not 

unique, but that the material derivative is unique (Chapter 3) 

3) Simpler sensitivity boundary condition for elasticity problems with traction boundary 

conditions (Chapter 3, Chapter 5) 

4) Most detailed application of continuous sensitivity to the solution of an elasticity 

problem to appear in the literature (Chapter 5) 

5) Demonstration that transient sensitivity problems need not be solved as a transient 

problem (Chapter 7) 

6) Demonstration of a condensation and recovery method for improving the condition 

number of least-squares finite element weakly enforced boundary data (Chapter 4) 

7) Observations on an apparent relationship between the minimum recommended 

polynomial order for the least-squares finite element (LSFEM) solution to elasticity 

problems and the lowest order stable-mixed element for elasticity (Chapter 4) 

8) First known documented use of an alternative norm solution for a LSFEM elasticity 

system and comparison with the traditional L2 norm (Chapter 4) 

9) Numerical stability analysis for a LSFEM domain with higher-order backward-

difference discrete time formulation method for transient LSFEM (Chapter 4) 
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10) Proof of the equivalence of Newton-Raphson tangent stiffness matrix and CSE 

system matrix for Galerkin FEM (Chapter 8) 

11) Derivation of an improved Newton-Raphson method for LSFEM (Chapter 8) 

9.4 Avenues for Future Research 

This research has introduced the local derivative form of the CSEs for fluid-

structure interaction problems.  Although the method has been successfully demonstrated 

on a relevant transient, nonlinear aeroelastic gust response problem, the example was 

relatively simple.  Further work is necessary to ensure the theoretical methods developed 

in this research are a practical option for the aeroelastic optimization of the large-scale 

applications of interest to the sponsor (Section 1.1).  This section describes the next 

logical steps for scaling the work up as well as other promising avenues for research that 

appeared during the course of the present effort. 

9.4.1 Problem and domain scaling 

The examples used to demonstrate the theory developed in this research were 

limited to 2D by the limits of the numerical finite element solver that was employed.  To 

apply these method to practical design optimization problems, full 3D fluids and 3D 

structural models are necessary.  There are no theoretical limits that preclude the 

extension of the continuous sensitivity to higher dimension.  The boundary 

parameterization will become more complicated (a line parameter in 2D becomes two 

surface coordinate parameters in 3D), but the principle of defining the boundary 

coordinate set in terms of material points still holds.  The most successful nonlinear fluid 

model (in terms of nonlinear, transient examples) was the full compressible potential 
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model derived and examined in Chapters 4 and 6 respectively.  A significant 

computational savings is possible by solving the linear potential equations, instead of the 

full compressible potential equations, and correcting the pressure solution for 

compressibility via one of the well-known compressibility corrections.  This is 

mathematically justifiable in the incompressible limit of the compressible potential 

equation, and it was also verified in a series of example problems for thin airfoils.   

Both coupled space-time FEM and backwards-difference time, FEM space 

formulations were developed in this research.  The space-time FEM model was the 

easiest to employ but was limited to 1D space applications because of the 2D limit of the 

numerical solver.  The numerical stability limits of the backwards-difference time method 

could only be established for the simplest cases.  A higher dimension finite element 

solver would permit higher dimension space-time FEM formulations.  For example, brick 

elements would allow 2D systems to be solved along the 3rd dimension for time.  Full 3D 

space formulations would require a 4th time dimension in the solver. 

The use of p-elements permitted an easy method for refining the sensitivity 

solution without creating a new computational mesh.  For higher space-time FEM 

formulations, the tensor product expansion basis is probably superior to the serendipity 

expansion.  This is primarily due to the uncertainty of how to select the proper 

serendipity terms.  The 3D or 4D “hyper-bubble” modes would be simpler to define by 

employing the tensor product expansion.  A tensor product expansion would also readily 

permit different p-values in different dimensions (e.g. independent p-values for time and 

space).  The cost of the tensor product expansion would be the additional degrees of 

freedom compared to the serendipity expansion. 
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9.4.2 Using commercial FSI software to solve the sensitivity system 

Fluid-structure interaction problems are not simple to solve.  The spectrum of 

coupling options and the disparate physics in the fluid and structure domains makes the 

time-accurate solution of nonlinear problems extremely challenging.  A large body of 

research exists for aeroelastic analysis, and some of the fruits of this research is now 

incorporated in commercial FSI solvers.  These are typically “black box” solvers and the 

user does not generally have access to the source code by which to code the sensitivity 

equations which, in the nonlinear case, are different from the analysis equations.  

However, under the conditions and numerical restrictions detailed in Chapter 8, the 

“black box” solver can be used to solve both the FSI and sensitivity problems.  This has 

been done using our LSFEM research code, but it would be far more convincing using 

one of the existing commercial solvers.  Publication and presentation of results obtained 

in this manner would also likely encourage further use of the continuous sensitivity 

method.  This is perhaps the quickest path to 3D FSI and sensitivity solutions, but one 

would have to forego the benefits of p-elements as this is not a current capability in the 

available commercial codes. 

9.4.3 Large-scale CSE (multiple design parameters) 

An two-parameter CSE example was demonstrated in Chapter 8, but all other 

sensitivity problems considered in this dissertation were single parameter designs.  Many 

practical design applications are multivariate in nature, so further study of efficient 

methods of performing large-scale CSE would be profitable.  Each design variable results 

in a separate CSE system, but there may be formulations and/or parameterizations which 

result in identical CSE systems for different parameters (the example considered in 
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Chapter 8 was of this nature).  This could permit computational savings in the solution of 

the sensitivity problem.  An CSE adjoint method was derived in Chapter 8, but no 

examples were considered.  The tradeoff between the computational expense of solving 

multiple CSE systems and an adjoint solution to the continuous sensitivity problem is a 

worthy topic for further research. 

9.5 Final Word on CSE for FSI applications 

Fluid-structure interaction problems are not simple to solve.  This is obvious from 

the range of attempts and methods in the literature.  In the present work, a significant 

level of effort was expended in developing the underlying analysis of the transient, 

nonlinear, fluid-structure interaction methods described in Chapters 4 and 7.  By contrast, 

however, once a valid solution is obtained for the fluid-structure system, the sensitivity 

analysis is straightforward and avoids many of the numerical complications of the parent 

fluid-structure problem.  This is one of the great advantages of the continuous sensitivity 

approach: the sensitivity of even a complicated nonlinear, transient, coupled problem is a 

simple, linear, boundary value problem that need only be solved at a particular point in 

time.  The continuous sensitivity method is particularly well-suited for shape variation 

problems.  For efficient shape parameter gradient calculation, the continuous sensitivity 

approach is probably best used when a description of the system is still at the continuum 

level, i.e. before discrete sections are defined, which makes the continuous sensitivity 

approach an ideal choice for preliminary shape optimization.  Nevertheless, there are no 

theoretical reasons that limit further application of the method.  Continuous sensitivity 
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methods are well-suited and deserve more widespread application for aeroelastic design 

optimization. 
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